C	C	1	A	0
	v	Т	4	J

(Pages: 2)

Name	

Reg. No.....

SIXTH SEMESTER B TECH. (ENGINEERING) DEGREE EXAMINATION JUNE 2010

ME 04 604—FINITE ELEMENT METHOD

(2004 Admissions)

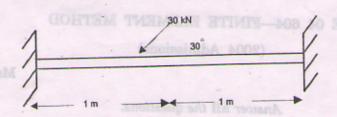
Time: Three Hours

Maximum: 100 Marks

Answer all the questions.

Any missing data may be suitably assumed.

- I (a) What is a shape function? State its characteristics.
 - (b) What is meant by displacement function?
 - (c) Express the shape functions of a 1-D beam element.
 - (d) Explain the different coordinate transformation in FE modeling.
 - (e) Express the shape functions of a bilinear rectangular element.
 - (f) Explain global stiffness matrix.
 - (g) What are essential and non-essential boundary conditions?
 - (h) Sketch the isoparametric quadrilateral element and show 2 × 2 and 3 × 3 Gaussian points.


 $(8 \times 5 = 40 \text{ marks})$

II (a) Explain with suitable example, the basic steps involved in finite element analysis of a structural problem.

Or

- (b) (i) What are various applications of Finite Element Analysis? Explain with simple examples.
 - (ii) Derive the generalised stiffness matrix from minimum potential energy principle.
- III (a) Derive stiffness equations for a bar element from the one dimensional second order equation by variated approach.

(b) Calculate the deflection at the center of the beam as shown in Figure. Take E=220 Gpa; $A=40 \text{ mm} \times 40 \text{ mm}$.

- IV (a) (i) Derive strain displacement [B] matrix for a 3 noded Triangular element.
 - (ii) The nodal coordinates and the nodal displacements of a triangular element, under a specific load condition are given below:

 $Y_i = 0$, $Y_i = 0$, $X_j = 1$ mm, $Y_j = 3$ mm, $X_k = 4$ mm, $Y_k = 1$, $u_l = 1$ mm, $u_2 = -0.05$ mm, $u_3 = 2$ mm, $v_1 = 0.5$ mm, $v_2 = 1.5$ mm and $v_3 = -1$ mm. If $E = 2 \times 10^5$ N/mm² and, $\mu = 0.3$, find the stresses in the element.

Or

- (b) Consider a brick wall (0.7 W/m K) of thickness 30 cm. The inner surface is at 28°C and the outer surface is exposed to cold air with heat transfer coefficient of 36W/m² K at −15°C. Determine the steady state temperature distribution and heat flux through the wall.
- V (a), (i) What are various applications of Finite Element Analysis? Explain with simple examples.
 - (ii) Derive the generalised stiffness matrix from minimum potential energy principle.

Or

(b) Derive the shape functions of a constant strain triangular element. Also briefly explain area co-ordinates.

 $(4 \times 15 = 60 \text{ marks})$