APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITA

B.Tech Degree S6 (S, FE) / S4 (PT) (S, FE) Examination May 2024 (2015 Scheme)

CHERUTHURY

Course Code: EC302

Course Name: DIGITAL COMMUNICATION

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

Marks

- 1 a) Differentiate between Strict Sense and Wide Sense Stationary processes. What is an (3) Ergodic random process?
 - b) Consider a sinusoidal process $X(t) = A \cos(2\pi f_c t)$, where f_c is a constant and (6) amplitude A is uniformly distributed.

$$f_A(a) = \begin{cases} 1, & 0 \le a \le 1 \\ 0, & else \end{cases}$$

Determine whether or not this process is strictly stationary.

- c) Explain the distortions involved in Delta modulation and how to overcome it using (6) adaptive delta modulation (ADM).
- 2 a) State and prove Nyquist criteria for distortion less transmission. (9)
 - b) What are the limitations of an ideal Nyquist channel? Explain how to overcome it. (6)
- 3 a) With necessary expressions and diagrams explain Duobinary Encoder system. (7)
 - b) Explain how error propagation is avoided in the duo binary coding system if (5) precoding is employed.
 - c) State Nyquist criteria for zero ISI. (3)

PART B

Answer any two full questions, each carries 15 marks

- 4 a) Explain geometric representation of signals in space. Draw analyzer and synthesizer (8) diagrams.
 - b) Using the Gram Schmidt orthogonolization procedure, find a set of orthonormal (7) basis functions to represent the three signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ given below. Express each of these signals in terms of the set of basis functions found above.

03000EC302052301

- 5 a) With the help of diagrams, explain the working of QPSK transmitter & receiver. (8)
 - b) Derive an expression for probability of error of BPSK system. (7)
- 6 a) Explain Maximum Likelihood Decoding. (7)
 - b) With the help of diagrams, explain non-coherent modulation scheme. (8)

PART C

Answer any two full questions, each carries 20 marks

- 7 a) With suitable block schematic, explain RAKE receiver and its relevance in CDMA (10) systems.
 - b) Describe direct sequence spread spectrum transmitter and receiver with block (10) diagram.
- 8 a) What is PN sequence? How it is generated? (6)
 - b) A pseudo noise sequence is generated using a feedback shift register of length m=4. (9) The chip rate is 10⁷chips/sec.

Find the following parameters

- a) PN sequence length
- b) Chip duration of PN sequence
- c) PN sequence period
- c) Define (5)
 - a) Gold Code
 - b) Maximal length code
- 9 a) In a direct sequence BPSK system, the feedback shift register used to generate the (10) PN sequence has length m=19. The system is required to have an average probability of symbol error due to externally generated interfering signals that does not exceed 10⁻⁵.

Calculate the following system parameters in dB.

- a) Processing gain
- b) Antijam margin
- b) Differentiate between coherence bandwidth and coherence time.
- What are diversity techniques? Explain how they are implemented in time, space& (7) frequency.

(3)
