03000CS304052102

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (S, FE) / S6 (PT) (S,FE) Examination May 2024 (2015)

Course Code: CS304 **Course Name: COMPILER DESIGN**

M	ax. N	Marks: 100 Duration: 3	Duration: 3 Hours	
		PART A	110 410	
		Answer all questions, each carries 3 marks.	Marks	
1		Discuss the role of a lexical analyzer.	(3)	
2		Define the terms: lexeme and token. How many tokens are there in the following	(3)	
		C statement?		
		<pre>printf("Total = %d\n", score);</pre>		
3		Describe the recursive procedure of a recursive descent parser.	(3)	
4		Write an algorithm to eliminate left recursion from a grammar.	(3)	
		PART B		
		Answer any two full questions, each carries 9 marks.		
5	a)	Describe the techniques used for input buffering.	(6)	
	b)	What is bootstrapping? Apply bootstrapping to develop a compiler for a new high	(3)	
		level language P on machine N.		
6	a)	Define parse tree. Construct a parse tree for the expression $-(id + id)$.	(5)	
	b)	Design a transition diagram for unsigned numbers.	(2)	
	c)	Write a regular expression for the set of strings containing 001 or 11 as substring.	(2)	
7	a)	Consider the context free grammar:	(5)	
	*	S -> S S + / S S * / a		
		And the string: aa + a *		
		i) Give a leftmost derivation for the string		
		ii) Give a rightmost derivation for the string		
		iii) Give a parse tree for the string		
		iv) Is the grammar ambiguous or not? Justify.		
	b)	Explain the error recovery strategies adopted by a parser.	(4)	
		PART C		

Answer all questions, each carries 3 marks.

(3)

Explain handle pruning.

B

7

8

9		Discuss the conflicts in a shift-reduce parser.	(3)
10		Explain L attributed definitions.	(3)
11		What are annotated parse tree? Give examples.	(3)
12		PART DAnswer any two full questions, each carries 9 marks.The following grammar generates regular expressions over $\{a, b\}$: $E \rightarrow E + T T$ $T \rightarrow T F F$ $F \rightarrow F * a b$ Prove that the grammar is SLR.	(9)
13	a)	Explain the working of a shift reduce parser.	(5)
	b)	Write Syntax Directed Definition of Desk calculator	(4)
14	a)	Design a type checker for simple arithmetic operations.	(5)
	b)	Distinguish between synthesized and inherited attributes.	(4)
		PART E	
15	a) b)	Answer any four full questions, each carries 10 marks. What is a DAG? Draw a DAG for the expression: $a + a * (b - c) + (b - c) * d$ Distinguish between static and dynamic storage allocation.	(5) (5)
16	í	Explain the different forms of three address code instructions.	(10)
17	a)	What are triples? Write the triple representation of the expression: $a = b^*-c + b^*-c$	(6)
	b)	How do we construct a flow graph from the three address code representation of a	(4)
,		source program?	
18	a)	Explain optimization of induction variables in loops.	(6)
	b)	Discuss the need of register descriptors and operand descriptors in code generation.	(4)
19		Explain the code generation algorithm.	(10)
20*	a)	Explain common sub expression elimination with an example.	(6)
	b)	Explain code motion with an example.	(4)

Page 2 of 2