6051



FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JUNE EN.04.401 (a) – Engineering Mathematics – IV

> (Common for all except CS and IT) (2004 Admissions)

Time: Three hours

Maximum: 100 marks

Answer all questions.

- 1. (a) Is the function  $V = e^x (x \sin y + y \cos y)$  harmonic?
  - (b) Find the image of the region 1 < x < 2, 1 < y < 2 under  $w = z^2$ .
  - (c) Evaluate  $\int_{C} \frac{dz}{(z^2+4)^2}$  where C is |z-i|=2.
  - (d) Find the Laurent's expansion of  $\frac{z-1}{z-2}$  for |z-1| < 1.
  - (e) Show that  $J_n(x) = \frac{x}{2n} [J_{n-1}(x) + J_{n+1}(x)].$
  - (f) Find the value of  $8 P_4(x) + 20 P_2(x) + 7 P_0(x)$ .
  - (g) Classify the equation  $U_{xx} + xu_{yy} = 0$ ,  $x \neq 0$  for all x, y. Also find its characteristic equation.
  - (h) Derive one dimensional wave equation.

 $(8 \times 5 = 40 \text{ marks})$ 

- II. (a) (i) Determine the analytic function whose imaginary part is  $e^{-x} (x \sin y y \cos y)$ .
  - (ii) Show that an analytic function with constant modulus is constant.

Or

(b) Show that the transformation  $w = \frac{i(1-z)}{1+z}$  maps the circle |z| = 1 into the real axis of the w-plane and the interior of the circle |z| < 1 into the upper half of the w-plane.

Turn over

- III. (a) (i) Evaluate  $\int_{C} \frac{z \sec z}{(1-z)^2} dz$ , C is |z| = 3.
  - (ii) Find the resedue at z = 0 of  $\frac{1 + e^2}{z \cos z + \sin z}$ .

Or

- (b) Show that  $\int_{0}^{2\pi} \frac{d\theta}{1 2p\sin\theta + p^2} = \frac{2\pi}{1 p^2} (0$
- IV. (a) Show that  $e^{\frac{1}{2}(t-\frac{1}{t})x} = \sum_{n=-\infty}^{\infty} t^n J_n(x)$ .

Or

- (b) (i) Express the function  $x^3 + 3x^2 5x + 2$  in terms of Legendre's polynomials.
  - (ii) Show that  $(1-x^2) P_n^1(x) = n [P_{n-1}(x) x P_n(x)].$
- V. (a) A string of length l is initially at rest in equilibrium position and each of its points is given the velocity  $\left(\frac{\partial y}{\partial t}\right)_{t=0} = b \sin^3 \frac{\pi x}{l}$ . Find the displacement y(x,t).

Or a second state (a) A B to solar and bard (b)

- (b) Solve the equation  $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$  subject to :
  - (i) u is not infinite for  $t \to \infty$ .
  - (ii)  $\frac{\partial u}{\partial x} = 0$  for x = 0, x = l.
  - (iii)  $u = lx x^2$  for t = 0 between x = 0 and x = l.

 $(4 \times 15 = 60 \text{ marks})$