Reg No.:

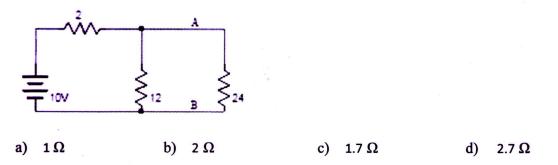
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (S, FE) / S6 (PT) (S) Examination January 2024 (2019 Scheme

Course Code: EET 308 Course name: COMPREHENSIVE COURSE WORK

Max. Marks: 50

Instructions:


Duration: 1Hour

(1) Each question carries one mark. No negative marks for wrong answers
(2) Total number of questions: 50
(3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct.
(4) If more than one option is chosen, it will not be considered for valuation.

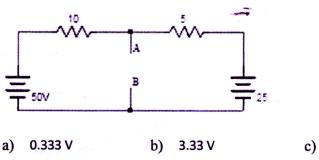
Superposition theorem cannot be applied in linear circuits to find out the following variable

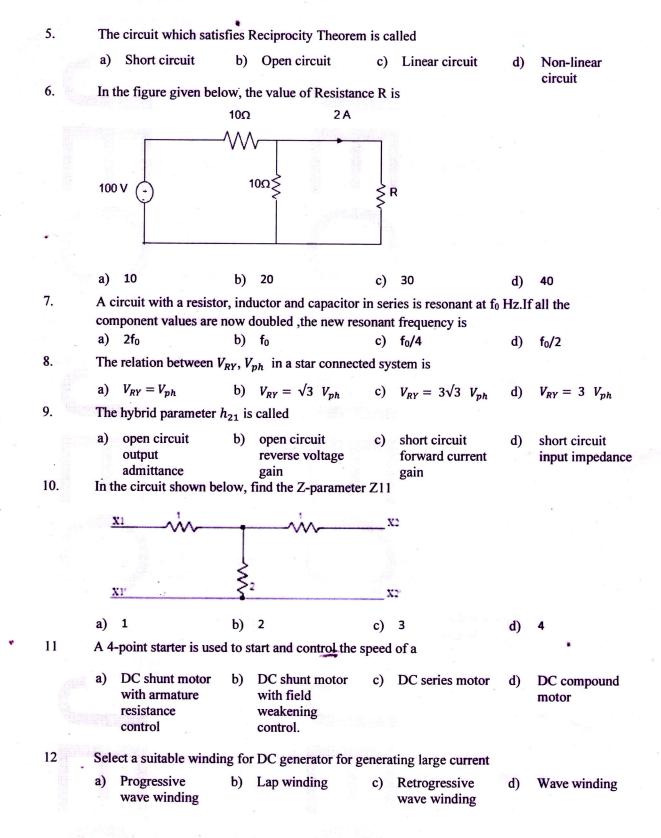
 a) Voltage
 b) Current
 c) Power
 d) None of these

Consider the circuit shown below. Find the Thevenin's resistance between terminals A and B. (All the value of resistances are in Ω).

An ac source of V=50V and f=50 Hz, having an internal impedance of $(1+j2) \Omega$ is connected across a load. For maximum power transfer, the load impedance should be a) $(1+j2) \Omega$ b) $(1-j2) \Omega$ c) $(2+j4) \Omega$ d) $j2 \Omega$

4.


3.


Determine the equivalent Thevenin's voltage between terminals A and B in the circuit shown below. (All the value of resistances are in Ω).

33.3 V

333 V

d)

	13	In	a DC machine, wh	ich o	f the following stater	nent	s is true?					
	14	a)	compensating winding is used for neutralizing armature reaction while interpole is used for producing residual flux	b)		C)) compensating winding is used for improving commutation while interpole is used for neutralizing armature reaction		winding is used for improving commutation reaction while interpole is used for producing			
	15	a)	Series	b)		c)	Cumulative compound	d)	Differential compound			
	15	DC	c shunt motors are o	comm								
		a)	Cranes	b)	Electric traction	c)	Elevators	d)	Lathe machines			
	16	a)	Not possible	b)	power factor load	c)	possible at leading power factor load		possible at lagging power factor load			
	17	satis	stactory toad sharm	ig	cal voltage but of d	iffer	ent capacities are op	perat	ing in parallel. For			
		a)	Impedance must be equal	b)	Per unit impedance must be equal	c)	Per unit impedance and X/R ratios must be equal	d)	Impedances and X/R ratios must be equal			
	18	The function of oil in a transformer is										
		a)	To provide insulation and cooling	b)	To provide protection against lightning	c)	To provide protection against short circuit	d)	To provide lubrication			
*	19	A series-wound motor is also called as universal motor because										
*			It will run equally well using either an ac or a dc	b)	It will run well below and above rated speed	c)	It can be used in all kinds of applications	d)	None of these			
2	20		voltage source power factor in a tra	ancfo	rmer							
		a)	is always unity	b)	is always leading	c)	is always lagging	d)	depends on the power factor of load			

ž

2	21		The following hexadecimal number $(1E.43)_{16}$ is equivalent to											
			a)	(36.506) ₈		(36.206) ₈	,	(35.506) ₈	d)	(36.206) ₈				
,	22		The Boolean expression AB+AC'+BC simplifies to											
			a)	BC+AC'	b)	AB+AC	c)	AB+AC'+B		AB +BC				
	23		Ac	ombinational log	ic ci	rcuit, which gener	ates	a particular bina	ry w	ord or number				
	29		is a)	Encoder	b)	Multiplexer	c)	Decoder	d)	Demultiplexer				
	24		$f(A,B,C,D)=\pi m$ (0,1,3,4,5,7,9,11,12,13,14,15) is a maxterm representation of a											
			Boolean function $f(A,B,C,D)$ where A is the MSB and D is the LSB. The equivalent											
			mit	imized represen	tation	n of this function	is							
			a)	(A + C' +	b)	AC'D + A'BD	c)	A'CD' +	d)	A'CD' +				
			u)	(A' + C) D)(A' + B +				AB'CD' +		AB'CD' +				
				D)(// 2				AB'C'D'		AB'C'D'				
	25		Th	e race around con	nditio	on occurs in a JK	flip	flop when		C .1 .				
				Both inputs are 0	b)	Both inputs are 1	c)	The inputs are complementary	d)	any one of the inputs				
	26		٨	shift register can	he u	sed for								
				parallel to	b)	serial to parallel	c)	Digital time delay only	'd)	all of the above				
				serial conversion		conversion only								
	27		W	only hich number syst	em h	as a base 16								
	21					Octal	c)	binary	d)	decimal				
				Hexadecimal	,		•,	e mary						
	28			onvert (312) ₈ into				202	d)	204				
			a)	201		202	c)		u)	204				
	<mark>29</mark>		What is the addition of the binary number 101001+ 010011=?											
			a)	010100	b)	111100	c)		d)	101110				
	30		TI	ne complete set o	of onl	y those Logic Gat	tes d	esignated as Uni	versa	I gates is				
۴			a)			XNOR,NOR and NAND gate	c)	NOR and NAND gate	d)	XOR,NOR and NAND gate				
	31			in insulators are) 100 kV	norm b)	ally used up to vo 33 Kv	oltag c)	e of about 66 kV	d)	250 kV				
32 A synchronous condenser is virtually which of the following?														
	52			(i)	b)		c)		d)	D.C. generator				
			a) -	Induction motor	5)	synchronous motor		synchronous motor		C				

.

Page 4 of 6

33	Which material is used in controlling chain reaction in a nuclear reactor?										
55	N		n controlling chai Heavy water		Beryllium		Boron				
	a) Thorium	0)	ficary water	•)	Deryman	-)	201011				
34	Ferranti effect states that under certain conditions the sending end voltage is										
	a) Less that	b)	Greater than	c)	Equal to	d)	Abnormally				
	receiving end voltage		receiving end voltage		receiving end voltage		high				
35	The diversity factor i	s defin	-		voltage						
	a) Average	b)	Sum of	c)	Maximum	d)	Average				
	demand/		consumers		demand/		demand/Capacity				
	maximum demand		maximum demand/		Average demand		factor				
•			Maximum load								
			on the station								
36	Which of the followi	ng gen	erating station has the	e mir	nimum running cost	t?					
	a) Hydro-electric	b)	Nuclear power	c)	Thermal power	d)	Diesel power				
37	station	- J L	station		station		plant				
57	Corona is accompani a) Violet visible	b)	Hissing sound	c)	Ozone	d)	All of the above				
	discharge in	0)	Thissing sound	0)	Ozone	u)	All of the above				
20	darkness What is the cause of skin effect?										
38						۲ ۲	Deth (a) and (b)				
	a) Supply frequency	b)	Self-inductance of conductor	C)	High sensitive material in the	d)	Both (a) and (b)				
					centre						
39	In which of the trans					•					
	a) Cable carrying dc current	b)	DC transmission line only	c)	AC transmission line only	d)	DC as well as AC transmission				
			-				lines				
40	On what factor does	the stri	ng efficiency of a str	ing o	of suspension insula	tors d	ependent?				
	a) Size of the	b)	Number of discs	c)	Size of tower	d)	None of these				
41	insulator		in the string								
41	Energy of a power si	-	7		In finite	4)	Between 1 And 2				
	a) Finite	b)	Zero	c)	Infinite	d)	Between I. And 2				
42	A time invariant system is a system whose output										
	a) increases with a	ı b)	decreases with a	c)	remains same	d)	vanishes with a				
	delay in input		delay in input		with a delay in input		delay in input				
43	If $x(-t) = -x(t)$ then the signal is said to be										
	a) Even signal	b)	Odd signal	c)	Periodic signal	d)	Non periodic				
							signal				

Page 5 of 6

.

					•				
44	Wh	at is the ar	ea of a l	Unit Ir	npulse function?				
	a)	Zero		b)	Half of Unity	c)	Depends on the function	d)	Unity
45	In	a signal flo	ow graph	n, node	es are represented	by sma			
	a)	Circles		b)	Squares	c)	Arrows	d)	Pointer
46	dor	nain?	cated at s		in left-hand plane		how will it be rep s/s + 5		
		1/s + 5			1/s - 5	- /			s/ s – 5
47			z-transfo		the signal x(n) the				
	a)	X(az)		b)	$X(a z^{-1})$	c)	$X(a^{-1}z)$	d)	None of these
48	R-			G ₂	to calculate the tran		iction of given fig	gure:	
49	a) The	$G_1/1+G_2$ Z transform		b) (n – m	$G_1 + G_2 / 1 + G_1 H$) is	c)	$G_2/1+G_1H$	d)	None of these
	a)	z^{-n}		b)	z^{-m}	c)	1/(z-n)	d)	1/(z-m)
50		at is the z-)={2,4,5,7,0 1		m of t	he following finite	e duratio	on signal?		
	a)	$2+4z+7z^3+z^4$	$5z^2 + 4$	b)	$2 + 4z + 5z^2 + 7z^3 + z^5$, c)	$2 + 4z^{-1} + 5z^{-2} - 7z^{-3} + z^{-5}$	+ d)	$2z^2 + 4z + 5$ + $7z^{-1} + z^{-3}$
								~	
			, gd a						

.

Page 6 of 6