Reg No.:____

1100EC

1100E	CT308012401	Pages: 4
.:	Name:	
APJ ABDUL KALAM	TECHNOLOGICAL UNI	IVERSITY SOUND
B.Tech Degree S6 (S, FE) / S6 (P7	Γ) (S) Examination January	2024 (2019 Scheme)

							. 444	Service Servic	
		*		Course Code:					
		Course	name	: COMPREHEN	SIVE	COURSE WOL	RK	•	
Max. I	Marks	: 50						Duration: 1Hour	
Instruc	tions:	(2) Total number of (3) All questions are which only ONE is	 (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. 						
1.	The	e early effect in BJ	T is ca	nused by .					
	a)	Fast turn OFF		Fast turn ON	c)	Large emitter to base forward bias	d)	Large collector to base reverse bias	
2.	The	Efficiency of half	wave	e bridge rectifier und	der be	st condition is:			
	a)	25.5%	b)	35%	c)	40.6%	d)	81.2%	
3.	Wh	ich of the followin	g BJT	configuration has h	ighes	t power gain			
	a)	Common Collector	b)	Common Emitter	c)	Common Base	d)	None of the above	
4.	Wh	at is the purpose of	a cou	pling capacitor in a	n amp	olifier circuit?			
•	a)	To filter out high-frequency noise	b)	To block DC and allow AC signals to pass	c)	To provide power supply to the amplifier	d)	To increase the gain of the amplifier	
5.	Wh	at is the purpose of	negat	ive feedback in an a	mplii	fier?			
	a)	Increase distortion	b)	Increase gain	c)	Improve stability and reduce distortion	d)	Decrease bandwidth	
6.	In a	transistor if $\beta = 10$	00 and	collector current is	10 m	A ,then I_F is			
		100 mA		10.10 mA					
7.	In th	ne hybrid- π model	for the	BJT small signal a	nalys	is, r_{π} denotes		above	
	a)	Input resistance		Trans conductance		Output resistance	d)	Trans impedence	
8.	Osci	illators requires				1 constante			
, .	a)	No feedback	b)	Negative feedback	c)	Positive feedback	d)	None of the above	
9.	The	unit of voltage gain	n-			TOUGUER	v	auuve	

1100ECT308012401

	a) dB	b) Volt	c) Ampere	,	o unit
10	How many cascaded S	tages of CE amplifier	will results in polarity invers	sion of t	he input signal
10.		b) Three	c) Four	d) N	one of these
	a) Two	,then the value of X i	S		
11		b) 225	c) 252	d) 2	50
10	a) 522	le contains	parity bits.		
12	a) 4	b) 2	c) 3	d) 1	
12		nt of binary 10110.11	is:		*
13	a) 16.75	b) 20.75	c) 16.50	d) 2	22.75
14 .			(A D) (A D)	oqual to	. 2
		Boolean variables, the	en what is $(A+B).(A+\overline{B})$ c) $A+B$	d)	AB
	a) B	b) A	•)		
15		is b) A+BC	c) (A+B).C	d)	(A.B+C)
	a) A.B.C	onds to the action of pa			
16		b) OR	c) NAND	d)	NOR
	a) AND	on which one input	is high and other three are lo	ow. The	output
17		b) Is high	c) Alternately high	d)	None of these
	a) Is low	•	and low		
18	A sequential circuit	s with twelve states	will have:	d)	3 flipflop
,	a) 10 flipflop	b) 12 flipflop	c) 4 flipflop	u)	5 Imprior
19	Which of the follow	ing is not a sequential o		d)	decoder
	a) flipflop	b) counter	c) register	u)	
20	The noise margin of	a TTL gate is about	c) 0.8 V	d)	0.6 V
	a) 0.2 V	b) 0.4 V	,	-)	
21		$A_d = 30 \text{ dB} \text{ and } A_c = 2$		d)	15 dB
٠	a) 26 dB	b) 28 dB	,	/	
22		fiers are used in	c) Multipliers	d)	All of the above
	a) Adders	b) Dividers	c) Multipliers		
23	What is PSRR valu	e of an Ideal Op-amp	c) infinite	d)	unpredictable
	a) Zero	b) unity			•
24		w pass RC circuit is giv		d)	22RC
	a) 2.2RC	b) 30.2RC	· ·		
25			e of positive feedback syste ng c) Schmitt Trigg	er d)	None of these
	a) Inverting amplifier	b) Non-Inverting amplifier	ing c) Schiller 11198		
	ampinier	acceptance &			

1100ECT308012401

26	Wh	at is the Time period	d of a	a Monostable 555 M	ultiv	ibrator?			
	a)	T=3 RC	b)	T=3.3 RC	c)	T=1.1RC	d)	T=1.3RC	
27	Wha	at is the primary pur	rpose	of a phase-locked lo	op (l	PLL) in linear integ	rated	circuits?	
	a)	Voltage amplification	b)	Frequency synthesis and synchronization	c)	Voltage stabilization	d)	None of these	
28	Which configuration of an operational amplifier provides a voltage gain greater than 1?								
•	a)	Inverting amplifier		Non Inverting amplifier		Differential amplifier	d)	Voltage followe	
29		at is the primary fun uits?	ction	n of a voltage-control	led o	oscillator (VCO) in	linear	integrated	
30	a)	Voltage amplification		Frequency modulation ting amplifier, if Vi=		Voltage stabilization Rf=10K Ri=1K	d)	Digital signal processing	
		10		1000		11	d)	Infinity	
31	,	Γ performs filtering			C)	- 11	u)	IIIIIIIty	
31	a)	Time domain	•	Frequency domain	c)	Both time and frequency domain	d)	None of these	
32	DF7	DFT of impulse signal is							
	a)	2π	b)	π	c)	1 -	d)	0	
33	Let	$x[n] = \{0, 1, A, 2,$	3,	4}. If X[0]=10, A=	?				
	a)	A=0	b)	A=1	(c)	A=10	d)	A=3	
34	In impulse invariant transformation, relationship between Ω and ω is								
	a)	$\Omega = \omega T$	b)	$\Omega = \omega/T$	c)	$\omega = \Omega / T$	d)	None of these	
35	The	frequency response	of a	digital filter is					
	a)	periodic	b)	Non periodic	c)	May be periodic or non-periodic	d)	None of these	
36	Dov	vn sampling by a fac	ctor c	of D skips		-			
•	a)	D samples	b)	(D-1) samples	c)	No samples	d)	(D+1) samples	
37 *	The	finite word length	effec	ts are due to					
20	a)	Quantization of input	b)	product	c)	Quantization of coefficient	d)	All of the mentioned	
38				due to input quantiz		-			
	a)	$\frac{2^{-2b}}{12}$	b)	$\frac{2^{-2b}}{6}$	c)	2^{-2b}	d)	2^{-b}	
39	For rectangular window the main lobe width is equal to								
	a)	$2\pi/N$	b)	$4\pi/N$	c)	$8\pi/N$	d)	$12\pi/N$	
40	The	number of complex	mul	tiplication involved in	n the	direct computation	of 8	point DFT is	
	2)	Q	b)	61	2)	16	4)	56	

1100ECT308012401

41	Qι	uantizing noise occur	rs in					
	a)			FDM	c)	PCM	d)	PWM
42	Co	ompanding is used t	о					
	a)	aliasing		Overcome degradation of SNR	c)	Overcome quantization error	d)	Increase data rate
43	In be.	a communication sys	stem	, the signal power is	13d	B and noise power	r is -1	dB. The SNR will
3-	a)	14 dB	b)	-13dB	c)	12 dB	d)	None of these
44	Th	e spectral density of	whit	e noise is				
	a)	Exponential	b)	uniform	c)	Poisson	d)	Gaussian
45	No	ise figure for an ide	al re	ceiver is	••			
	a)	0	b)	0.1	c)	1	d)	10
46	Boo	osting of higher freq	uenc	y at the transmitter is	don	e by using		
	a)	De-emphasis	b)	AGC circuit	c)	Pre-emphasis	d)	Armstrong method
47	Wh	ich of the following	puls	e modulation is analo	og?			metriod
	a)	PCM	b)	Differential PCM	c)	PWM	d)	Delta Modulation
48	The	main advantage of	supe	r heterodyne is				Modulation
	a)	Simple circuit	b)	Better tracking	c)	Improvement in selectivity and	d)	Better alignment
49	The	channel capacity is	meas	sured in terms of:		sensitivity		
	a)	Bit per channel		Number of input channels connected	c)	Call per channel	d)	bits
50	In a	PCM system each q	uant	ization level is encod	led in	to 7 bits. The signa	al-to-d	quantization noise
	a)	25.8dB	b)	34.6dB	c)	43.9dB	d)	49.8dB