Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

B.Tech Degree S6 (S, FE) / S6 (PT) (S) Examination January 2024 (2019 Scheme)

Course Code: CET308

Course name: COMPREHENSIVE COURSE WORK

Max. Marks: 50

Instructions: (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation.

1.

Hooke's law holds good up to ------

	a)	Yield point	b)	Ultimate stress	c)	Limit of	d)	Elastic limit
				point		proportionality		
2.	Relationship connecting Young's modulus € and Bulk modulus (K) is							

- a) $E = 3K(1-2\mu)$ b) $E = 2K(1+2\mu)$ c) $E = 3K(1-\mu)$ d) $E = 3K(1+\mu)$
- When a copper wire of length 2 m and diameter 40 mm is subjected to an axial pull of 80 Kn, its
diameter reduces by 0.00775 mm and length increased by 1.2 mm. Calculate the Poisson's ratio
of the wire.a) 0.22b) 0.13c) 0.32d) 0.35
- 4.

5.

6.

7.

3.

What will be the value of Young's modulus, if a material has Poisson's ratio 0.25 and Shear modulus 100 Mpa?

a) 250 Mpa b) 225 Mpa

c) 175 MPa

d) 300 MPa

aves

Duration: 1Hour

The shear force diagram for a simply supported beam carrying a uniformly distributed load of 'w' N/m consists of

a) One right angled	b) One equilateral	c) Two right angled	d)	Two equilateral							
triangle	triangle	triangles		triangles							
Point of contraflexure is the point											

a) at which shear b) at which bending c) of maximum d) of maximum force diagram moment diagram shear force bending moment changes its sign

The maximum value of bending moment for a cantilever beam of length '*l*' m carrying uniformly distributed load of intensity 'w' N/m throughout the span is ------

a)
$$\frac{wl^2}{2}$$
 b) $\frac{wl^2}{8}$ c) $\frac{wl^2}{3}$ d) $\frac{wl^2}{12}$

8.	Tł	The section modulus for a triangle section of width 'b' and height 'h' will be								
	a)	$\frac{bh^2}{dt}$	b)	$\frac{bh^2}{12}$	c)	$\frac{bh^2}{36}$	d)			
9.	Th	16 ne maximum shear s	tress	12 in a rectangular cross	sect	36 tion is averag	ge she	24 ar stress		
	a)	1.25 times	b)	1.3 times	c)	1.5 times	d)	0.5 times		
10.	The value for shear stress in principle plane is									
	a)	One	b)	Maximum	c)	Zero	d)	Negative		
11.	B	ernoulli's equation i	s app	licable for						
12.	in	the x-direction is gi	stead ven l	compressible fluid flow y flow filed, in a certa by $v_x = x^2$ and the der	isity	incompressible fluid flow gion of the x-y plane varies as $\rho = 1/x$. V	d) e, the Which	Viscous and incompressible fluid flow velocity component of the following is		
				elocity component in	the	y-direction, vy?				
		$\mathbf{v}_{\mathbf{y}} = -\frac{\mathbf{x}}{\mathbf{y}}$		J		$v_y = -xy$	d)	$\mathbf{v}_{\mathbf{y}} = \mathbf{x}\mathbf{y}$		
13.	Th		n is b	ased on the principle	of					
14. •	a) Dai	Conservation of mass rcy- Weisbach equa		Conservation of momentum gives relation between		Conservation of energy	d)	Conservation of force		
15.	a)	Pressure and temperature	b)	Mass, volume and pressure accounts for the majo	c)	Head loss and pressure loss	d)	Pressure loss only		
	a)	Density		Specific gravity		Compressibility	d)	Viscosity		
16.	For	a channel to be eco	nomi	c which of the follow	ving	parameters should l	be mi	•		
	a)	Wetted perimeter	b)	Wetted area	c)	Section factor	d)	Hydraulic depth		
17.	Fin velo	d the hydraulic dep ocity.	th fo	r a most economical	circ	cular channel section	on in	case of maximum		
	a)	0.2D	b)	0.3D	c)	0.4D	d)	0.5D		
18.	Нус	fraulic jump is obse	rved	in				x.		
19.	a) Dur	Closed channel flow		Open channel flow		Flow changes	d)	Volumetric changes		
19.	a)	Zero		hat is the value of Fro	E .		I)			
20.				Greater than one		Less than one	d)	Not defined		
20.	is 1(a)	0 m ³ /s, calculate the 0.7m	spec	llar channel is 4 m an ific energy. 1.0m	na th c)	e maximum discha	rge th d)	1.6m		
21.	A w	ell-conditioned tria	igle l	nas angles not less that	an	and more than		nectively		
	a)	10° and 90°	b)	20° and 120°		90° and 120°	d)	None of these		

22.	If dec		-		n at a place	in s	outhern hemisp	here is	150°, then magne	tic
	a)	30° E		o) 30° W		c)	20° E	d) 20° W	
23.	A	10 cm theodoli	te means	that) 20 11	
	a)	Length of its telescope is cm	s b 10) Height telesco	of the pe is 10 cm	c)	Diameter of the graduated circ of its lower plate	le) Diameter of the graduated circle of its vertical	
24.	An	y arbitrarily as	sumed le	vel line fro	om which ve	ertica	is 10 cm Il distances are r	neasure	circle is 10 cm	
-	<i>a)</i>	Level line	b)) Vertica	l line	c)	Horizontal line			
25.	Erre	or due to eccen	tricity of	inner and	outer axis c	an b	e eliminated by			
	a)	Taking mean both the face observations	of b)	Reading verniers	g both and he mean of	c)	Taking several readings distributed ove different positions of the	r	None of these	
26.	If L	is latitude and	D is den	arture the	n closing or	, 	graduated circle	e		
27.	a)	$\sqrt{\sum L^2 + \sum}$	2 b) D	$\sqrt{\sum L}$ +	$+\sum D$	c)	$\sum L^2 - \sum I$	2 d)	None of these	
	a)			a simple o	curve of rad	ius R	, then length of	its long	chord is	
3	u)	$R \sin \frac{\Delta}{2}$	b)	$2R\sin\frac{\Delta}{2}$		c)	$R \cos{\frac{\Delta}{2}}$	d)	$2R\cos{\frac{\Delta}{2}}$	
28.	obser	bserver standin evel. If the heig ver from the li 22.5 km	ghthouse	deck of sh observer ³ will be ne 24.3 km	arly	in au	op of a lighthous ove the sea leve 33.3 km		the distance of the 59.7 km	
29.	Two r	points A and B	are 1520							
			are 1550	n apart a	cross a rive	r. Th	e reciprocal leve	els meas	sured are:	
	*		Lev	el at	R	eadin	ngs on (m)			
			· ·	A	Α		B			
				В	2.165		3.810 2.355			
	What ;	a the two life					*		· ·	
	<i>a)</i> 1.	s the true diffe 255 m	b) 1	l.455 m	c		545 m	d)	1.645 m	
30.	The lin	nits of water le	evel in a r	iver repre	sents a			u)	1.040 10	
	a) Co	ontour line				Co	ontour gradient	d)	None of these	
		x								

31.	The void ratio and specific gravity of a soil sample are 0.65 and 2.72 respectively. The degree of saturation corresponding to a water content of 20 % is								
	a) 65.3	b) 20.9	c) 83.7	d)	54.4				
32.	Which of the follo grained soil	wing method is more su	itable for the determination o	f perme	ability of a coarse-				
	a) Constant hear method	d b) Falling head method	c) Horizontal permeability test	d) t	Pumping out test				
33.	A coarse-grained soil has a void ratio 0.75, and specific gravity as 2.75. The critical gradient which quick sand condition occurs is								
	a) 0.25	b) 0.5	c) 0.75	d)	1.00				
34.		ctive stresses at a depth of the stresses at a depth of the stresses at a depth of the stress of the	of 5 m below the top level of	water in	n a swimming pool				
	a) 0.5 kg/cm ² ar zero	nd b) zero and zero	o c) 0.5 kg/cm ² and 0.5 kg/cm ²	d)	None of the above				
35.		fined compressive stren e water content, is	gth of an undisturbed soil sam	ple to t	hat of a remoulded				
	a) Activity	b) Damping	c) Plasticity	d)	Sensitivity				
36.	Toughness index i	s defined as the ratio of							
	a) Plasticity index to flow index		· · ·	d)	None of the above				
37.	Porosity and void ratio are related by:								
	a) $e = \frac{n}{1-n}$	b) $n = \frac{e}{1-e}$	c) $1 - e = n$	d)	$\frac{1+n}{n} = e - 1$				
38.		ed soil sample, the degree							
	a) 0	b) 0.5	c) 0.8	d)	1				
39.	The law which gov	verns the permeability o	f a soil is						
*	a) Darcy's law	b) Terzaghi's theorem	c) Stoke's law	d)	Mohr Coulomb theory				
40.	Most accurate met		on of water content of soil is		licery				
	a) Sand bath method	b) Pycnometer method	c) Alcohol method	,	Oven drying method				
41.			sible for the early age strengt		.*				
10	a) C_2S	b) C ₃ A	c) C ₃ S	d)	C ₄ AF				
42.	The strength of co	ncrete below which not	more than 5 % of the test res	sults ae	expected to fall is				
	a) Compressive strength	b) Characteristi compressive strength	· ·	d)	Ultimate strength				

43.	The property of fresh concrete, in which the water in the mix tends to rise to the surface while placing and compaction is called							
	a)	Bleeding	b)	Creep	c)	Segregation	d)	Shrinkage
44.	For	protecting the metal	sur	faces against rusting,	the 1	most suitable type p	aint is	S
	a)	Emulsion paint	b)	Cellulose paint	c)	Asbestos paint	d)	Aluminium paint
45.	Which of the following concept is not suitable for cavity wall construction?							
	a)	Reliable sound insulation	b)	Effective thermal comfort	c)	Lower maintenance cost	d)	High self - weight
46.	Wh	ich among the follow	ving	is the benefits of pre	fabri	icated construction?		
	a)	Inferior Quality control	b)	Time savings	c)	Higher cost	d)	Lesser flexibility
47.	Of the following which among is the causes of failure of RCC Structures?							
	a)	Corrosion	b)	Over loading	c)	Accidental loading	d)	All the above
48.	For contract the contractor need to quote rates for each item based on bill of quantities.							ll of quantities.
	a)	Lump sum contract	b)	Item rate contract	c)	Turn key contract	d)	BOT contract
49.	For a particular type of work only one contractor has qualified in the prequalification process. What type of tender shall be submitted for the work by such a contractor?							
	a)	Open tender	b)	Limited tender	c)	Single tender	d)	Rate contract tender
50.	For	an activity in the cri	itical	path the total float s	hall	be the value		
	a)	LFT – EFT	b)	LFT – EST	c)	EFT – LST	d)	EST - duration

ă

Page 5 of 5