D

02000EET206052104

Pages: 2

Name: Reg No.: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S, FE) / S2 (PT) (S) Examination January 2024 (2019 Scheme)

Course Code: EET206

Course Name: DIGITAL ELECTRONICS **Duration: 3 Hours** Max. Marks: 100 PART A Marks (Answer all questions; each question carries 3 marks) 3 Implement NOT circuit using a two input EX-OR gate. 1 Subtract decimal number 22 from 17 using 8 bit 2's complement method. 3 2 3 Using the Boolean laws and rules, simplify the logic expression 3 $Z = (\bar{A} + B)(A + B)$ Convert the following function into standard POS and express as maxterms 3 4 $Y(A,B,C)=(A+B)(B+\bar{C})(A+C)$ 3 Draw the circuit for a 4 x 1 MUX and explain operation. 5 3 Draw the circuit for Decimal to BCD encoder circuit and explain. 6 Determine the number of flip-flops needed to construct a register capable of 3 storing (i) a 6 bit binary number (ii) hexadecimal numbers upto F (iii) octal 7 numbers upto 10. Draw the circuit and timing diagram for a 2 bit ripple counter using D Flip flop. 3 8 3 Draw the circuit of flash ADC and explain. 3 Write the structural mode of three input AND gate in Verilog HDL. 10 PART B (Answer one full question from each module, each question carries 14 marks) Module -1 10 Convert the following a) 11 i) $(1001011)_{gray} = ()_2$ ii) $(10110110.0011)_2 = ()_{BCD}$ iii) $(5762)_8 = ()_{16}$ v)Attach the proper even parity bit to 10100100 and odd parity bit to 11111000. iv) $(76)_{10} = ()_{gray}$ b) Convert the decimal number 3.248×10^4 to a single-precision floating-point 4 binary number. 12 a) With example explain any two representations for signed binary numbers 4 b) Explain the working of TTL NAND gate with the help of internal diagram. 10

02000EET206052104

Module -2

13	a)	Using k-map determine the minimal sum of product expression and realize the simplified expression using only NAND gates	10
	b)	$f(w, x, y, z) = \pi M(0, 2, 3, 7, 8, 9, 10)$ Show that a full adder can be constructed with two half adders and an OR gate.	4
14	a)	Use a K-map to simplify $AC[\bar{B} + B(B + \bar{C})]$ to a minimum SOP form.	4
• •	b)	Realise a 4 bit look ahead carry adder. What is the advantage over a ripple adder?	10
	U)	Module -3	10
15	a)	Implement the Boolean function $F(A,B,C,D) = \Sigma m(1,3,4,11,12,13,14,15)$ using 8:1 multiplexer.	7
	ß)	Design and draw implementation circuit for an odd parity generator circuit for 4 bit binary data.	7
16	a)	Design two bit comparator using decoder.	8
	b)	Draw the implementation circuit of a 1:8 Demultiplexer using two 1:4 demultiplexers	6
		Module -4	
17	a)	Illustrate the conversion of (a) a J-K flipflop into a D flip-flop and (b) a J-K flip-flop into a T flip-flop. Explain.	4
	b)	Show how an asynchronous counter with J-K flip-flops can be implemented having a modulus of twelve with a straight binary sequence from 0000 through 1011. Also draw the timing diagram.	10
18	a)	Design a counter to produce the following binary sequence. Use J-K flip-flops. 1, 4, 3, 5, 7, 6, 2, 1,	10
	b)	Draw the circuit and timing diagrams of a 3 bit SISO shift register	4
		Module -5	
19	a)	Explain the working of successive approximation ADC with the help of an example.	10
	b)	Differentiate Moore and Mealy state machines.	4
,20	a)	Explain the working of R-2R ladder type DAC with the help of an example. What is its advantage over weighted resister type DAC?	10
	b)	Compare PAL and PLA with their logic implementation.	4
