0200ECT204122301

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVER

B.Tech Degree S4 (S, FE) / S4 (PT) (S) Examination January 2024

Course Code: ECT204 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100

Duration: 3 Hours

(2019 Scheme

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Differentiate between even and odd signals.	3
2	Determine whether the signal given is periodic or not. If periodic, determine	3
	fundamental period. Given $x(n) = Cos(3\pi n)$	
3	Determine the Fourier transform of the signal given : $x(t) = \partial(t)$.	3
4	What is meant by Gibbs' phenomenon?	3
5	Check whether the systems described by the following equation is causal $y(n) =$	3
	x(n-1) + 3x(n-2).	
6	What is meant by Nyquist rate and nyquist interval?	3
7	Write any 3 properties of DTFS.	3
8	Perform convolution of the sequences $x_1(n) = \{1, 2, 3, 1\}$ and $x_2(n) = \{4, 3, 2, 2\}$.	3
9	Find the unilateral z-transform of $x(n) = a^{n+1}u(n)$.	3
10	Explain ROC and its properties.	3

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

- 11 a) A discrete-time system is represented by the following difference equation in 7 which x(n) is input and y(n) is the output: $y(n) = 3y^2(n-1) - nx(n) + 4x(n-1) - 2x(n+1)$. Is this system Linear or Shift-invariant or causal?
 - b) Examine whether the following signal: $x(n) = \cos\left(\frac{n}{10}\right)\cos\left(\frac{n\pi}{10}\right)$ is a periodic 7 signal or not.
- 12 a) Determine the energy of the signal $x(t) = cos(10\pi t)u(t)u(t-2)$. 7
 - b) Test whether the system described by the equation $F[x(n)] = n[x(n)]^2$ is linear 7 and time-invariant.

0200ECT204122301

Module -2

Obtain the Fourier transform of a periodic gate function of amplitude B, period 7 a) To and width τ assuming that the function is centered on the origin.

- A discrete-time signal is given as $x(n) = a^{|n|}$ for -1 < a < 1. Find the DTFT. 7 b)
- Determine the Laplace transform and ROC for the following signal x(t) =7 14 a) $-e^{at}u(-t).$
 - Determine the Laplace transforms of the following sinusoidal function x(t) = A7 b) sin ωt u(t).

Module -3

- The transfer function of LTI system is given by H(s) = $\frac{2s-1}{s^2+3s+2}$. Determine the 8 15 a) impulse response.
 - What is the difference between unilateral and bilateral Laplace transforms? 6 b) Determine the system response y(t) for a system given below to a input x(t) =

14

10

7

7

16

13

$e^{3t}u(t)$ and $H(s) = \frac{2s^2+6s+6}{s^2+3s+2}$

Module -4

- 17 a) Explain the 4 properties of DTFT.
 - If nyquist criteria is not met, what will happen to the sampled signal? 4 **b**)
- Find the frequency response $H((e^{j\omega}))$ and impulse response h(n) of a causal 18 14 a) discrete time LTI sysem which is characterised by the difference equation given as under: y(n) - (3/4)y(n-1) + (1/8) y(n-2) = 2 x(n).

Module -5

- 19 A discrete time signal is expressed as $x(n) = \delta(n+1) + 2\delta(n) + 5\delta(n-3) - 2\delta(n-4)$. 7 a) Find its z- transform.
 - Obtain z-transform of $x(n) = a^n \sin \omega_0 nu(n)$. b)
- Determine the response of the following system: $x(n+2) 3x(n+1) + 2x(n) = \delta(n)$ 7 20 a)
 - Find the z-transform and ROC of the signal $x(n) = [3(2^n) 4(3^n)]u(n)$. b)