Reg No.:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S, FE) / S2 (PT) (S) Examination January 2024 (2019 Scheme)

C

Course Code: ECT202 Course Name: ANALOG CIRCUITS

M	ax. I	Marks: 100 Duration: 3	Hours
		PART A	
		(Answer all questions; each question carries 3 marks)	Mark
1		Derive the output voltage expression for an RC differentiator.	3
2		What is the need for biasing a transistor? What factors are to be considered for	3
		selecting the operating point Q?	
3		Explain the hybrid- π parameters of BJT in CE configuration.	3
4		State Miller's theorem.	3
5		Draw the block diagram of a multistage amplifier with n number of stages and	3
		give an expression for its overall voltage gain.	
6		Explain with a diagram common source MOSFET stage with diode-connected	3
		load	
7		List any three advantages of negative feedback in amplifiers.	3
8		A voltage series negative feedback amplifier has a voltage gain without feedback	3
		A =500. Input and output resistances are 3 K Ω and 20 K Ω respectively ,feedback	
		factor $\beta = 0.01$. Calculate the voltage gain $A_f R_{if}$, R_{of} of the amplifier with	
		feedback .	
9		With the help of a block diagram explain the working of a linear regulated power	3
		supply.	
10		Compare class A, class B, and class AB power amplifiers.	3
		PART	
		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Design an RC low pass filter with a cut off frequency 2 KHz. Also plot its	7
		frequency response.	
	b)	Explain the concept of operating point with help of dc and ac load lines.	7
12	a)	Set up a slicer circuit that clips an input sine wave at +3V and -4V. Draw the	6
		output waveform and transfer characteristics. Assume the diodes are ideal.	

0200ECT202122301

	b)	Derive the stability factor of a voltage divider bias circuit.	8
		Module -2	
13	a)	Obtain the hybrid- π model for a single transistor with a resistive load RL.	6
	b)	Short circuit CE current gain of transistor is 25 at a frequency of 2 MHz if	8
		f_{β} = 200 kHz. Calculate (i) f_{T} (ii) hfe (iii) Ai at a frequency of 10 MHz and	
		100 MHz	
14	a)	Explain the need of various components in an RC coupled amplifier with a neat	7
		circuit diagram, also draw its frequency response.	
	b)	With a neat diagram explain high frequency equivalent circuit of BJT.	7
•		Module -3	
15	a)	Briefly explain the Common Source stage with current source load.	7
	b)	Draw the circuit of cascade amplifier and list any three advantages of this	7
		configuration.	

16 a) Calculate the drain current and drain-to-source voltage of the following common 7 source circuit. Given $R_1 = 15$ K, $R_2 = 10$ K, $R_D = 5.6$ K, VDD=8V, VT=1V, $Kn=0.1mA/V^2$.

b) Explain any two biasing techniques for enhancement MOSFET.

Module -4

7

8

- 17 a) In a Wein bridge oscillator given that $R_1 = R_2 = 200K\Omega$ and $C_1 = C_2 = 6$ 250pF.Determine the frequency of oscillations.
 - b) What are the four basic feedback topologies? Explain with block diagrams.
- 18 a) Explain the working principle of crystal oscillator.Draw the equivalent circuit of 6 a crystal.

0200ECT202122301

.

b) An amplifier has a voltage gain of 400, $f_1 = 50$ Hz, $f_2 = 200$ KHz and a distortion of 8 10% without feedback. Determine the amplifier voltage gain , f_{1f} , f_{2f} and D_f when a negative feedback is applied with feedback ratio of 0.01.

Module -5

19	a)	Explain the working of a transformer coupled class A power amplifier	8
	b)	Define line regulation and load regulation in a voltage regulator.	6
20	a)	In a class B amplifier $V_{CEmin} = 2V$, supply voltage VCC = 15V. Find the collector	6
·		circuit efficiency η.	

8

b) Describe the operation of a transistor shunt regulator.