0200CET204122301

	0200CL1204122301		1/5	JR Lages. A	0n	11
Reg No	o.:	Name:	10/2		M Tal	VON N
	APJ ABDUL KALAM TECHNOLO	OGICAL UNIVE	RSITY	188	2/1/9	Say!
	B.Tech Degree S4 (S, FE) / S4 (PT) (S) Examin	ation January 2024	4 (201	9 Scheme)		1
				PUTHURY	Children of the Children	er.

Course Code: CET204 Course Name: GEOTECHNICAL ENGINEERING - I

Ma	Max. Marks: 100 Duration: 3									
Duration. 5 Hours										
		PART A (Answer all questions; each question carries 3 marks)	Mark	κs						
1		Draw phase diagrams for fully saturated and dry soil.	3							
2		Differentiate between specific gravity of soil solids and mass specific gravity.	3							
3		Define i) relative consistency iii) relative density and iv) water plasticity ratio	3							
4		List the factors affecting permeability.	3							
5		Explain critical hydraulic gradient with the help of a neat sketch.	3							
6		List different approximate methods for the determination of vertical stress below	3							
		loaded areas.								
7		Define the terms i) Coefficient of volume compressibility ii) compression index	3							
		and iii) Degree of consolidation								
8		Explain the terms i) relative compaction ii) placement water content iii) zero air	3							
		voids line								
9		Mention any three limitations of direct shear test.	3							
10		Sketch different types of failures of finite slopes.	3							
٠		PART B (Answer one full question from each module, each question carries 14 marks)								
		Module -1								
11	a)	With the help of phase diagram establish the relation $n_a = \frac{e(1-S)}{1+e}$ where 'e' is the	6							
	b)	void ratio, n _a is the % air voids S is the degree of saturation. A soil has a porosity of 40%, the specific gravity of solids of 2.65 and a water	8	•						
		content of 12% determine the volume of water required to be added to 100m³ of								
		this soil for full saturation.								
12	a)	Differentiate between flocculated and dispersed structure.	4							
	b)	The soil in a borrow pit has a void ratio of 0.90. A fill-in-place volume of 20,000 m3 is to be constructed with an in-place dry density of 18.84	10							

0200CET204122301

 kN/m^3 . If the owner of borrow area is to be compensated at Rs. 1.50 per cubic metre of excavation, determine the cost of compensation. Take G=2.7

Module -2

- 13 a) List the assumptions made in the hydrometer analysis and the corrections in the 6 observed readings.
 - b) A test for the determination of the liquid limit was carried out and the following 8 results were obtained. Liquid limit is 72% and flow index 22. What will be the consistency index and the water plasticity ratio of the soil if the plastic limit and natural water content are 28% and 32% respectively? Also calculate the toughness index.

6

- 14 a) Explain with a neat sketch well graded, poorly graded and gap graded soils.
 - b) A horizontal stratified soil deposit consists of three layers each uniform in itself. The permeability of these layers are 8×10^{-4} cm/s, 52×10^{-4} cm/s, and 6×10^{-4} cm/s, and their thicknesses are 7, 3 and 10 m respectively. Find the ratio of effective average permeability of the deposit in the horizontal and vertical directions

Module -3

- 15 a) Explain effective stress principle and define total stress, neutral stress and effective 4 stress.
 - b) At a particular site lies a layer of fine sand 8 m thick below the ground surface and having a void ratio of 0.7. The water table is at a depth of 4 m below the ground surface. The average degree of saturation of the sand above the capillary fringe is 50%. The soil is saturated due to capillary action to a height of 2.0 m above the Ground water table level. Assuming G_s = 2.65, calculate the total and effective pressures at depths of 6 m and 3m below the ground surface.
- 16 a) What is a Newmark's chart? Explain how this can be used for the determination 4 of vertical pressure below loaded areas.
 - b) A strip footing 2m wide carries a uniform pressure of 250kN/m² on the surface of 10 a deposit of sand. The water table is at the surface. The saturated unit weight of the sand is 20kN/m³. Determine the effective vertical stress at a point 3m below the centre of the footing before and after the application of the pressure.

Module -4

17 a) The average natural moisture content of a deposit is 40%; the specific gravity of 8 the solid matter is 2.8, and the compression index *Cc* is 0.36. If the clay deposit

0200CET204122301

is 6.1 m thick drained on both sides, calculate the final consolidation settlement Given: original overburden pressure = 60 kN/m^2 and increase in pressure at the centre of clay layer = 30 kN/m^2

b) Sketch a flow curve and explain its uses.

6

18 a) Differentiate between compaction and consolidation.

6

8

b) The maximum dry density of a sample by the light compaction test is 17.8 kN/m³ at an optimum water content of 15%. Find the percentage air voids and the degree of saturation. G=2.67. What would be the corresponding value of dry density on the zero air voids line at OMC.

Module -5

- What is the shearing strength of soil along a horizontal plane at a depth of 4 m in 8 a deposit of sand having the following properties: Angle of internal friction, $\phi = 35^{\circ}$, Dry unit weight, $\gamma_d = 17 \text{ kN/m}^3$, Specific gravity, Gs = 2.7. Assume the ground water table is at a depth of 2.5 m from the ground surface. Also find the change in shear strength when the water table rises to the ground surface.
 - b) Explain different types of shear test based on drainage condition.

6

20 a) Explain Taylor's stability chart and its uses.

4

b) Calculate the factor of safety with respect to cohesion, of a clay slope laid at 1 in 2 to a height of 10m. Cohesion is $25kN/m^2$ and angle of internal friction 10^0 $\Upsilon=19kN/m^3$. What will be the critical height of the slope in this soil? Given stability number = 0.064
