Reg No.:_

Name: 0200MAT206122301 APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

EDUC

RUTH

3

B.Tech Degree S4 (S, FE) / S2 (PT) (S) Examination January 2024 (2019 Scheme

Course Code: MAT206 Course Name: GRAPH THEORY

Max. Marks: 100 Dur		ation: 3 Hours	
	PART A (Answer all questions; each question carries 3 marks)	Marks	
1	Show that there is no simple graph corresponding to the following degree	3	
	sequence		
	2, 2, 3, 4, 5, 5.		
2	Draw all non-isomorphic simple graphs on 3 vertices.	3	
3	Draw a connected graph which becomes disconnected when any edge is removed	3	
	from it.		
4	What is a complement of a graph ? Illustrate with a suitable example.	3	
5	Prove that there is one and only one path between any pair of vertices in a tree.	3	
6	Show that the number of vertices in a binary tree is odd.	3	
7	Define a planar graph. Draw two planar embeddings of K_4 .	3	
8	What do you mean by a fundamental circuit with respect to a spanning tree in a	3	
	connected graph G? Give examples.		
9	Find the chromatic number of the following graph. Justify.	3	
	V.		

10

Draw the digraph G corresponding to the adjacency matrix

Page 1 of 4

0200MAT206122301

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

7

7

7

7

- 11 a) Define and differentiate between a walk, path and circuit with examples.
 - b) Determine whether the following graphs are isomorphic. Justify.

- 12 a) Prove that a graph G will be disconnected if and only if its vertex set V can be 7 partitioned into two non-empty, disjoint subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in subset V_1 and the other in subset V_2 .
 - b) Draw the complete graph on n vertices K_n for n = 1, 2, 3, 4, 5, 6.

Module -2

- 13 a) Prove that a connected graph is Euler graph if and only if it can be decomposed 7 into circuits.
 - b) Find the union, intersection and ring sum of the following graphs.

- 14 a) In a complete graph with n vertices there are $\frac{(n-1)}{2}$ edge-disjoint Hamiltonian 7 circuits, if n is odd number ≥ 3 .
 - b) What is an equivalence graph ? Draw the equivalence graph corresponding to the 7 relation "is congruent to modulo 3" in the set of eleven integers from 10 to 20.

Page 2 of 4

0200MAT206122301

Module -3

- 15 a) Prove that a tree with n vertices have n 1 edges.
 - b) Use Kruskal's algorithm to find a minimum spanning tree for the following 7 graph

16 a) Prove that a connected graph with n vertices and n-1 edges is a tree.

b) Apply Floyd Warshall algorithm to find the shortest distance between all pairs of 7 vertices in the following graph.

Module -4

- 17 a) Show that every cut set of a graph G has an even number of edges in common 7 with any circuit.
 - b) What are self-dual graphs ? Show that K_4 is self-dual.
- 18 a) Define vertex connectivity and edge connectivity of a graph with examples. 7
 What are separable graphs. Give examples of separable and non-separable graphs.
 - b) Draw a graph with vertex connectivity 1 and edge connectivity 3.

7

7

7

7

0200MAT206122301

Module -5

19 a) For any graph G, show that the chromatic number $\kappa(G) \le \Delta(G) + 1$, where $\Delta(G) = 7$ is the maximum degree of a vertex in G.

- b) Prove that a covering g of a graph G is minimal if and only if g contains no paths 7 of length three or more.
- 20 a) Explain the terms covering, minimal covering and covering number of a graph G 7 with examples.
 - b) What do you mean by circuit matrix of a graph ? Write down the circuit matrix 7 for the following graph

