Reg No.:_

Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (S, FE) / S6 (PT) (S) Examination January 2024 (2019 Scheme)

Course Code: ECT306

Course Name: INFORMATION THEORY AND CODING

Max. Marks: 100

Duration: 3 Hours

EDL

HURU

	PART A Answer all questions, each carries 3 marks.	Marks
1	A source is transmitting six different messages at the rate of 100 msg/sec. The	(3)
	probabilities of the messages are $\frac{1}{2}$, $\frac{1}{4}$, 1/6, 1/8, 1/32 and 1/32. Calculate the	
	information rate.	
2	Define Entropy and list its properties.	(3)
3	State Shannon's second theorem on channel capacity. Give the Positive and	(3)
	Negative statements.	
4	Explain Binary Symmetric Channel.	(3)
5	A (6, 3) linear block code has a generator matrix given by $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$.	(3)
	Find all the code vectors.	
6	Explain the error detection and error correction capability of a linear block code.	(3)
7	The generator polynomial of a (7, 4) Cyclic code is $G(p) = p^3 + p + 1$. Find the	(3)
	code vectors in systematic form for the message vector 0101.	
8	Explain the BCH codes.	(3)
9	Draw the encoder circuit of a (2, 1, 3) convolutional encoder, with sequences are	(3)
	[1001] and [1111] as impulse responses.	
10	Explain LDPC Codes.	(3)
	PART B Answer one full question from each module, each carries 14 marks.	

Module I

11 a) State and prove Kraft's inequality. (7) b) A Discrete memoryless system has 6 codes with probabilities 1/3, 1/4, 1/8, 1/8, 1/12, (7) and 1/12.Obtain the Huffman codes and find the code efficiency and redundancy.

1200ECT306052303

OR

12	a)	The joint probability matrix of a communication system is given by	(10)
		$P(XY) = \begin{bmatrix} 0.1 & 0.05 & 0.05 \\ 0.2 & 0.15 & 0.1 \\ 0.1 & 0.2 & 0.05 \end{bmatrix}$. Find H(X), H(Y), H(X,Y), H(X/Y) and H(Y/X).	
	b)	Explain uniquely decodable and prefix free property of source code	(4)
		Module II	
13	a)	Derive the capacity of a Binary Erasure Channel.	(6)
	b)	Given a binary channel,	(8)

b) Given a binary channel,

- 1. Find the channel matrix.
- 2. Find $P(y_1)$ and $P(y_2)$ given $P(x_1) = P(x_2) = 0.5$
- 3. Find the joint probability $P(x_1, y_2)$ and $P(x_2, y_1)$.

OR

14 a) A voice grade channel of a telephone network has a bandwidth of 3.4KHZ.

a. Calculate the channel capacity of the telephone channel or a signal to noise ratio of 30dB.

(7)

(12)

b. Calculate the minimum signal to noise ratio required to support information transmission through the telephone channel at the rate of 4800bits/sec.

b) State Shannon Hartely theorem and explain the significance of Shannon Limit. (7)

Modutefil

15 a) The parity check list of an (8,4) linear block code is given by

C5 = d1 + d2 + d4

C6= d1+ d2+d3

C7=d1+ d3+d4

- C8= d2+d3+d4
 - a. Find the generator and parity check matrix.

Page 2of 3

1200ECT306052303

		b. Find the minimum weight.	
		c. Calculate the error correction and detection capability.	
		d. Implement the encoder circuit.	
	b)	List the properties to be satisfied by a linear block code?	(2)
		OR	
16	a)	Define ring and field. Discuss its properties.	(5)
	b)	The parity matrix for a (7,4) linear block code is given by	(9)
	•	$P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	
		a. Find all code vectors.	
		b. Find Parity check matrix.	
		c. Implement an decoder circuit of the code	
		Module IV	
17	a)	The generator polynomial of a (7, 4) Cyclic code is $G(p) = p^3 + p + 1$. Find the code	(10)
		vectors corresponding to the message vectors 1011 and 1101 in Non-systematic form	
	b)	Discuss the properties of Hamming codes.	(4)
		OR	
18	a)	Draw syndrome circuit for a (7, 4) cyclic code generated by $g(x) = 1 + x + x^2$. If	(10)
		the received code word r is [0010110], what is the syndrome of r? Explain the circuit	
		with a table showing the contents of syndrome register.	
	b)	Explain decoding of cyclic codes.	(4)
		Module V	
19		For a Convolutional encoder, the generator sequences are given as, $g^{(1)} = (1,1,0)$	(14)
		and $g^{(2)} = (1,0,1)$. Obtain the state diagram and encode the message sequence	
		(1011). Also verify the output sequence using Transform domain approach.	
		OR	

20

19

For a (2,1,2) convolutional encoder with generator sequences $g^{(1)} = (1,1,1)$ and (14) $g^{(2)}$ = (1,0,1). Draw the Trellis diagram and perform Viterbi decoding on this trellis for the received sequence {01, 10, 10, 11, 01, 01, 11} and obtain the estimate of the transmitted sequence.

Page 3of 3