Reg No.:_____

Name:

THIO

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (S, FE) / S6 (PT) (S, FE) Examination January 2024 (2015 Scheme)

Course Code: EC370

Course Name: DIGITAL IMAGE PROCESSING

Μ	Max. Marks: 100 Duration			
		PART A		
		Answer any two full questions, each carries 15 marks	Marks	
1	a)	Illustrate the RGB colour cube with a neat diagram with the primary and secondary colours. Explain the conversion of colours from RGB to CMY?	(5)	
	D)	State and explain 2D sampling theorem for band limited images	(10)	
2	a)	State and prove any two properties of 2D DFT.	(7)	
	b)	Explain Kronecker Product of Matrices. Compute the $AB \land B \otimes A$ of given Matrices $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ Check whether they are equal or not	(8)	
3	a)	Explain the terms Weber ratio and Mach band effect.	(5)	
	b)	Explain singular value decomposition with respect to digital images	(10)	
		PART B		
		Answer any two full questions, each carries 15 marks		
4	a)	Perform histogram equalization on the 5*5 image with intensity levels 0 to 7	(8)	
		4 4 4 4 4		
		5 3 3 5 5		
		4 5 4 3 4		
	b)	Explain logarithmic transformation and Power-Law transformation	(7)	
5	a)	Write a short note on Lagrange multipliers	(5)	
	b)	Explain the image restoration mechanism using a Weiner filter.	(10)	
6	a)	Explain the smoothing of images in frequency domain using (i) ideal low pass filters and (ii) Butterworth low pass filters	(8)	
	b)	Explain inverse filtering used in image processing	(7)	

03000EC370052102

PART C

Answer any two full questions, each carries 20 marks

7	a)	Explain how image smoothing is used to improve global threshold in image	(10)
		segmentation	
	b)	Explain split and merge procedure in image segmentation	(10)
8	a)	Explain arithmetic coding with suitable example	(10)
	b)	What are the basic data redundancies exploited in image compression? Explain.	(10)
9	a)	Explain how lines can be detected using Hough transform.	(10)
	b)	Construct Huffman coding to encode and decode the word "IMAGE".	(10)

Page 2 of 2