03000EC304052301

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (S, FE) / S4 (PT) (S, FE) Examination January 2024 (2015 Scheme)

Course Code: EC304

Course Name: VLSI

Max. Marks: 100

Duration: 3 Hours

Pages: 2

PART A

		Answer any two full questions, each carries 15 marks	Marks			
1	a)	Explain the principle of crystal growth by the Czochralzki method with	(9)			
		necessary diagrams				
	b)	Write short notes on Fick's laws of diffusion	(6)			
2	a)	With the aid of neat diagrams explain the fabrication process of a transistor	(7)			
	b)	Explain the principle of molecular beam epitaxy with schematic diagrams.	(8)			
		What are its advantages and disadvantages?				
3	a)	What is photolithography? illustrate the steps involved in the photolithography	(10)			
		process with diagrams				
	b)	Explain the Deal and Grove model of oxidation	(5)			
		PART B				
	Answer any two full questions, each carries 15 marks					
4	a)	Derive the expression for a CMOS inverter's rise time and fall time.	(8)			
	b)	Draw the stick diagram of two input CMOS NAND and NOR gate	(7)			
5	a)	Explain pass transistor logic. What are its limitations and how it can be	(9)			
		corrected?				
۲	b)	Implement the functions $u = A'B+AB'$ and $v = AB+A'B'$ using complementary	(6)			
		pass transistor logic.				
6	a)	Explain the different operating regions of a transmission gate with the help of	(7)			
		characteristics	z			
	b)	What is layout design rule? What are the differences between λ rule and the	(8)			
		micron rule?				

03000EC304052301

• PART C

	(# 17)	Answer any two full questions, each carries 20 marks	
7	a)	Draw the circuit schematic of a 4x4 NAND ROM to store the words 1010,	(10)
		0101, 1001 and 0001.	
	b)	Draw the circuit diagram of the 6T SRAM cell. Briefly explain the read-and-	(10)
		write operation by drawing the simplified models	
8	a)	Explain the 4×4 bit-array multiplier with a block diagram.	(10)
•	b)	Explain the 16-bit linear carry select adder with neat figures and show the	(10)
		critical path.	
9	a)	What is FPGA? What are its applications? With block diagram explain its	(10)
		internal architecture.	
	b)	With necessary diagrams and equations, explain the design of the carry	(10)
		bypass adders	

*

equal of the balance

1

.