08000CST201122201

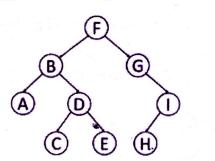
Reg No.:

С

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (R, S) / S1 (PT) (S, FE) Examination December 2023 (2019 Scheme)


Course Code: CST201 Course Name: DATA STRUCTURES

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions. Each question carries 3 marks	Marks
1	Explain the best case, worst case, average case of linear search algorithm.	(3)
2	What is frequency count? Calculate the frequency count of the statement	(3)
	x = x+1; in the following code segment	
	for $(i = 0; i < n; i++)$	
	for $(j = 1; j < n; j = 2)$	
	$\mathbf{x} = \mathbf{x} + 1;$	
3	What are the applications of stack?	(3)
4	Differentiate between simple queue with circular queue	(3)
5	Write an algorithm to insert an element at the end of doubly linked list. Illustrate	(3)
	with the help of an example.	
6	What do you mean by self-referential structure? Give one example	(3)
7	Differentiate between complete binary tree and full binary tree with suitable	(3)
	example.	
8	Write the output of inorder, preorder and postorder traversals on the following	(3)
	tree	

9Illustrate insertion sort algorithm.(3)10What do you mean by Double Hashing? Explain with an example .(3)

Page 1of 3

08000CST201122201

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

11	a	Explain any three asymptotic notations used to express the complexity of	(9)
		algorithm with the help of suitable examples.	
	b	Derive Big-O notation for the function $f(n) = n^3 + 2n^2 + 5$.	(5)
12	a	Write an algorithm to find the sum of n numbers and calculate its time	(7)
		complexity.	
	b	Explain various phases in system life cycle.	(7)
		Module 2	
13	a	Write the algorithm to add two polynomials represented by arrays and illustrate	(9)
		with an example	
	b	Write an algorithm to reverse a string using a stack.	(5)
14	a	What do you mean by the data structure Priority Queue? Write algorithms to	(5)
		insert an element into a priority queue.	
	b	Write an algorithm to convert an infix expression into its equivalent postfix	(9)
		expression. Convert the expression $((A/(B-D+E))*(F-G)*H)$ to postfix form.	
		Show each step in the conversion including the stack contents.	
		Module 3	
15	a	What do you mean by a circular linked list? Write an algorithm to perform insert	(7)
		and delete operations on a circular linked list.	
	b	Given five memory partitions of 400Kb, 600Kb, 350Kb, 200Kb, 800Kb (in	(7)
		order), how would the first-fit, best-fit, and worst-fit algorithms place processes	
		of 520 Kb, 617 Kb, 200 Kb, and 750 Kb (in order)?	
16	а	Write an algorithm to insert an element at the beginning, end and intermediate	(7)
		position of a doubly linked list.	
	b	Write an algorithm to append one linked list to another. Explain with an	(7)
		example.	
		Module 4	L
17	a	Write and discuss algorithm to insert an element to Binary search tree. Show the	(7)
		structure of the binary search tree after adding each of the following values in	
	×	that order: 2, 5, 1, 7, 10, 9, 11, 6.	
	b	Write and illustrate non recursive pre-order tree traversal algorithm	(7)

08000CST201122201

18	a	Write and illustrate Depth first search algorithm	(7)
	b	Explain various graph representations with example	(7)
		Module 5	
19	a	Write and illustrate Merge sort algorithm with a suitable example.	(9)
	b	Write selection sort algorithm with the help of an example	(5)
20	a	Hash the following keys using open chaining method and closed linear probing	(6)
		method. Size of table is 11 and the Hash function $H(K) = K \mod 11$.	
		Keys ={17, 22, 34, 23, 19, 66}	
	b	Explain any four hash functions with examples.	(8)