D

1100MRT307122301

Pages: 2

			7
Reg No.:	<u> 18 </u>	Name:	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2023 (2019 Scheme)

Course Code: MRT 307 Course Name: SOFT COMPUTING TECHNIQUES

Max. Marks: 100 Duration: 3 Hours

	PART A	
-	(Answer all questions; each question carries 3 marks)	Marks
1	What are the features of membership function?	3
2	Explain the theoretic operations over fuzzy set?	3
3	Illustrate the block diagram of FIS?	3
4	Discuss about gradient descent method?	3
5	Explain the Widrow-Hoff learning rule used for supervised learning in neural	3
	network	
6	Define the basic terminologies used in Genetic algorithm?	3
7	What is competitive learning in unsupervised learning?	3
8	Explain about Hybrid learning algorithm?	3
9	Describe about RBFN concept used in soft computing.	3
10	Differentiate between two kinematics problems.	3
	PART B (Answer one full question from each module, each question carries 14 marks)	

Module -1

11 a) Define fuzzy set and membership function. Explain any 5 membership functions? 9

$$A = \left\{ \frac{1}{2} + \frac{0.3}{4} + \frac{0.5}{6} + \frac{0.2}{8} \right\}$$

$$\vec{B} = \left\{ \frac{0.5}{2} + \frac{0.4}{4} + \frac{0.1}{6} + \frac{1}{8} \right\}$$

Perform Union, Intersection, Difference and Complement over fuzzy set A and B.

1100MRT307122301

12	a)	List out the methods of membership value assignments? Explain any two methods in detail?	7
	b)	Write a note on fuzzy if then rules	7
		Module -2	
13		What is Defuzzification? Explain Defuzzification methods given below:	14
		Max-membership principle	
		Centroid method	
		Weighted average method	
		Mean-max membership	
		• Center of sums	
		Center of largest area	
14		Explain in detail about Mamdani and Sugeno fuzzy inference system?	14
		Module -3	
15		Illustrate the perceptron network with perceptron training algorithm?	14
16		Define selection in genetic algorithm? Explain the various types of selection	14
		methods?	
		Module -4	
17	a)	Discuss about Hebbian learning algorithm?	7
	b)	Describe about Learning Vector Quantisation?	7
18	a)	Elaborate about kohonen self-organizing feature map?	7
	b)	Explain about Radial basis function with its architecture?	7
		Module -5	
19		Explain Adaptive Neuro-Fuzzy inference system with its architecture?	14
20		What is colour recipe prediction? Explain how color recipe prediction can be	14
		done using soft computing?	