1100ECT305122203

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (R, S) / S3 (PT) (R, S) Examination December 2023 (2019 Scheme)

Course Code: ECT 305

Course Name: ANALOG AND DIGITAL COMMUNICATION

Max. Marks: 100

Duration: 3 Hours

3

3

9

ages:

		PART A (Answer all questions; each question carries 3 marks)	Marks
1	•	Discuss the need for modulation in communication system.	3
2		Explain narrow band FM and wide band FM.	3
3		What is mutual information? Explain any two properties of mutual information.	3
4		Define the Power Spectral Density (PSD) of a stationary random process X(t).	3
5		What is waveform coding? What are the three main steps in waveform coding?	3
6		What is the advantage of delta modulation over DPCM?	3
7		The output of a duobinary encoder is -2 0 0 0 2 0 -2. Find the transmitted data	3
		sequence.	

What is a matched filter? Find the impulse response of the matched filter for the 3 given input.

S(t)

9 Draw the signal constellation diagram of BPSK and explain it briefly.

10 Explain the basic concept of QAM.

PART B-

(Answer one full question from each module, each question carries 14 marks)

Module -1

- 11 a) Obtain the band width and frequency spectrum of AM wave, with the help of 9 mathematical equations.
 - b) Calculate the percentage power saving when the carrier and one of the sidebands 5 are suppressed in an AM wave with modulation index equal to (a) 1 and (b) 0.40
- 12 a) What is SSB in AM? Explain phase shift method of SSB generation.

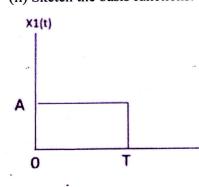
8

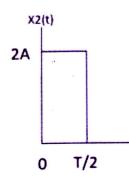
à

1100ECT305122203

b) An FM wave is represented as $v = 12 \sin (6 \times 10^8 t + 5 \sin 1250 t)$. Find its carrier 5 frequency, modulating frequency, modulation index and maximum deviation (δ_{max}) .

Module -2


- a) Show that for a finite variance σ², the Gaussian random variable has the largest 7 differential entropy attainable by any random variable.
 - b) A source emits one of the four possible symbols during each signalling interval. 7 The symbols occur with the probabilities $p_{0=}0.4$, $p_{0=}0.3$, $p_{0=}0.2$, and $p_{0=}0.1$. Find the amount of information gained by observing the source emitting each of these signals.
- 14 a) State and explain the properties of the autocorrelation function. 6
 - b) Find the autocorrelation function of a sinusoidal process with random phase $X(t) = A \cos(2\pi f_c t + \theta)$


Module -3

- 15 a) Draw the block diagram of a PCM transmitter and receiver and explain the system. 9
 - b) State and explain sampling theorem.
 A PCM system uses a uniform quantizer followed by an 8-bit encoder. If the bit rate of the system is 10⁸ bps, then what is the maximum bandwidth of the low-pass message signal for which the system operates satisfactorily?
- 16 a) Draw the block diagram of DPCM transmitter and receiver. Explain each block. 9
 - b) Explain the format of output code in an 8 bit (15 level) μLaw compander with μ=255. In a practical 8-bit (15 level) μLaw compander, output code is 00110001.
 Find its sign, segment value and quantized level.

Module -4

17 a) (i) Using the Gram-Schmidt orthogonalization procedure, find orthonormal 14 functions for the set of given signals x1(t) and x2(t) given below.
(ii) Sketch the basis functions.

8

5

Page 2 of 3

1100ECT305122203

18	a)	What are the practical difficulties encountered in ideal Nyquist channel? How	8
		can those be overcome by raised cosine filters.	
	b)	Compare Maximum Likelihood receiver and MAP receiver.	6
		Module -5	
19	a)	Draw the block diagram of BPSK generation and detection system. Explain with	10
		relevant equations.	
	b)	Draw the signal constellation diagram of QPSK and explain it briefly.	4
20	a)	Draw the BER v/s SNR plot for the BPSK system and explain the graph.	4
	b)	Derive the expression for probability of error in QPSK.	10