Reg No.:____

Name:

Rages:

3

3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech Degree (S, FE) Examination January 2024 (2015 Scheme)

Course Code: CS202

Course Name: COMPUTER ORGANISATION AND ARCHITECTURE (CS, IT) Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks

1		Write one address, two address, and three address representations for the below 3		
		operation.		
		$\mathbf{X} = [\mathbf{Y}] * [\mathbf{Z}]$		
2		Differentiate between big-endian and little-endian byte assignments.	3	
3		Design a 3x2 array multiplier.	3	
4		Divide 21/8 using non restoring algorithm.	3	
		PART B		
		Answer any two questions, each carries 9 marks		
5	a)	Explain multiple bus organizations with the help of a diagram	6	
	b)	Write notes on any three addressing modes of the ARM processor.	3	
6	a)	Draw the flowchart of Booth's algorithm and use the algorithm to perform the	9	
		multiplication of the following signed 2's-complement numbers. Assume that A is		
		the multiplicand and B is the multiplier.		
		i) $A = 101011$ and $B = 010011$		
7	a)	Sketch and explain the working of the basic functional units of a Computer.	5	
۴	b)	Using relevant examples explain stack frames, push operation, pop operation, and	4	
		stack pointer		
		PART C		
		Answer all questions, each carries 3 marks		
8		How does a processor respond when an interrupt is encountered?	3	
9		List and describe the registers in a DMA interface.	3	

- 10 With the help of a neat diagram explain the memory hierarchy in Computer.
- 11 What are the various types of ROM?

B

05000CS202122301

PART D

Answer any two questions, each carries 9 marks

12	a)	Explain the different methods of bus arbitration.	5
	b)	Illustrate the operation of the Small Computer System Interface bus.	4
13	a)) Write short notes on USB architecture and explain the working with the help of	
		neat diagram.	
	b)	Give the structure of a typical static RAM cell and explain its read and write	4
		operations.	
14		Explain the various types of Cache mapping techniques using suitable examples.	9
		PART E	
		Answer any four questions, each carries 10 marks	
15	a)	With a neat diagram explain the working of a two-port scratchpad memory.	5
	b)	What are arithmetic, logic and shift microoperations. Give examples for each.	5
16		Discuss the different methods of control logic design in detail.	10
17		Design an arithmetic section with one selection variable S, Cin and two 4-bit	10
		inputs A and B. Draw the diagram for four stages that performs the following	

S	Cin =0	Cin =1
0	Y = Decrement A	Y= A-B
1	$\mathbf{Y} = \mathbf{A} + \mathbf{B}$	Y = Increment A

When s=0, the circuit performs A+B and when s=1 it performs A-B, by taking 2's complement of B.

6

4

18 a) Illustrate the working of a status register.

operations.

- b) Design a 4-bit combinational logic shifter.
- 19 20

۴

- Explain with the help of a diagram, the working of the microprogram sequencer10Draw a labelled block diagram of a processor unit with seven registers R1 to R7, a10
- status register, ALU with 3-selection variables and Cin, and shifter with 3 selection variables.