Reg No.:____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

Third Semester B.Tech Degree Regular and Supplementary Examination December 2023 (2019 Scheme)

Course Code: RAT 205 Course Name: DIGITAL ELECTRONICS

Max. Marks: 100

Duration: 3 Hours

Pages: 2

PART A

		Answer all questions. Each question carries 3 marks	Marks
	1	Convert the gray number 10110010 into (i) hex (ii) octal (iii) decimal	(3)
	2	What are Excess-3 codes? Find the excess-3 code for the decimal number 597.	(3)
	2	Prove $AB+A'C+BC = AB+A'C$	(3)
	4	Express the function $f(A,B,C) = AB + BC$ in standard POS form.	
	5	If MOD-3, MOD-4 and MOD-5 counters are cascaded with input frequency of	(3)
	5	18 MHz, what is the number of states and output frequency respectively?	
	6	Draw the truth table of JK flip flop and explain race round condition in JK flip	(3)
		flop.	(2)
	7	Differentiate between synchronous and asynchronous counters.	(3)
	8	Draw and explain 3 bit Johnson counter.	(3)
	9	List three advantages and applications of FPGA.	(3)
	10	Differentiate RAM and ROM.	(3)
		PART B Answer any one full question from each module. Each question carries 14 mark	S
		Module 1	
11	а	Perform subtraction using 2's complement method:	(8)
••		(i) (-64) ₁₀ from (+32) ₁₀ (ii) (29.A) ₁₆ from (4F.B) ₁₆ . Use 8 bit representation.	
	b	Realise basic gates using universal gates.	(6)
12	a	Convert (i) (2020.65625) ₁₀ to octal (ii) (54673) ₈ to binary	(4)
-		(iii) $(1024)_8$ to hexadecimal (iv) $(1010)_2$ to Gray	
	b	Explain the working of CMOS NAND gate with the help of internal circuit	(10)
	-	diagram.	
		Module 2	(6)
13	a	Implement the function $F(A,B,C) = \Sigma m(0,2,3,7)$ using 4x1 MUX.	(0)

D

0800RAT205122101

	b	Reduce the function $f(A,B,C,D) = A'B'D + ABC'D' + A'BD + ABCD'$ using	(8)
(* j		K map and implement using NAND gates.	
14	a	What is the difference between a parallel adder and a carry look-ahead adder?	(8)
1		Explain the operation of carry look-ahead adder.	
	b	Implement full adder using 3:8 decoder.	(6)
		Module 3	
15	а	Design a MOD-5 asynchronous down counter using T flip flop and explain its	(7)
		operation. Show the timing diagram.	
	b.	Convert JK flip flop to D flip flop.	(7)
16	a	Design a 3 bit asynchronous updown counter using JK flip flop. Show the	(10)
		timing diagram for up and down counting.	
	b	Explain the working of a parallel in parallel out shift register using the logic	(4)
		circuit.	
		Module 4	
17	a	Draw and explain the working of R-2R ladder Digital to Analog Convertor.	(10)
	b	Explain the working of a 4 bit Johnson counter.	(4)
18	-	Design a 4 bit binary synchronous counter using D flip flop.	(14)
		Module 5	
19	a	Write the Verilog code for 8x1 MUX.	(6)
	b	Differentiate PROM and EPROM.	(8)
20	a	Explain the difference between PLA and PAL devices with the help of internal	(10)
		logic diagrams.	
	b	Write the Verilog code for half adder.	(4)

*			

1