0800RAT203122103

Reg No.:__

С

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Regular and Supplementary Examination December 2023 (2019 Scheme

Course Code: RAT203

Course Name: ELECTRONIC DEVICES AND CIRCUITS

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions. Each question carries 3 marks	Marks
1	Analyse the working of a combination clipper using diodes.	(3)
2	Draw the h-Parameter model of a BJT.	(3)
3	Illustrate the effect of Miller capacitance in the frequency response of a CS	(3)
	amplifier.	
4	Draw and explain the drain characteristics of JFET.	(3)
5	Explain the working of Class C power amplifier.	(3)
6	Compare positive feedback with negative feedback.	(3)
7	State Bark Hausen's Criterion for sustained oscillations.	(3)
8	How can op-amps be used to subtract two input voltages.	(3)
9	Show that the output from a differentiating circuit is derivative of the input.	(3)
10	Design a zero-crossing detector circuit using an op-amp.	(3)

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

- * 11 a What is the necessity of biasing circuits? With a neat circuit diagram derive the (7) expression for stability factor for a fixed bias circuit.
 - b Consider the Collector feedback Resistor Bias circuit as shown in the figure (7) below that has a silicon transistor with β =100 and V_{BE}=0.7 V. a) Find the operating point. b) Find the new operating point if β =50 and all other circuit parameters remaining the same?

0800RAT203122103

- 12 a Sketch and explain the working of a positive shunt clipper to clip an input (4) sinusoidal signal having peak values at \pm 6V, to a positive reference voltage of +2V. Explain the role of coupling and emitter bypass capacitors in amplifier circuits. b (4) С Draw and explain the circuit for bias compensation using thermistor. (6) Module 2 13 a With neat sketches explain the construction, working and characteristics of N-(8) channel enhancement MOSFET. b Explain voltage divider biasing scheme for JFET with the help of a neat sketch. (6) 14 a For a CS amplifier, draw the small signal equivalent circuit and determine the (10)expression for gain, input impedance and output impedance. b How can an FET act as a Voltage Controlled Resistance? (4) Module 3 15 a Draw the circuit diagram and explain the working of a two stage RC Coupled (8) amplifier. Also list its advantages and disadvantages. b Explain the effect of negative feedback on gain, input impedance and bandwidth. (6) 16 a Explain the working of a Transformer coupled class A power amplifier with a (9) neat circuit diagram. Derive the expression for maximum efficiency. b With a neat schematic diagram explain the working of Direct coupled Transistor (5) Amplifier. Module 4 17 Analyse the working of an RC Phase shift oscillator with a neat diagram. Derive a (10)
 - b Design a non-inverting amplifier using op-amp. Derive the expression for its (4) output voltage.

the expression for gain and frequency of oscillation.

0800RAT203122103

18	a	Explain the working of a crystal oscillator.	(4)
	b	Define the terms, CMRR and slew rate of an op-amp. Also specify their typical	(5)
		values for IC741.	
	c	Design a summing amplifier circuit using op-amp to yield $V_0 = -V_1 + 2V_2 - 3V_3$.	(5)
		Assume the feedback resistance R_f as 10 K. Ω .	
		Module 5	
⁻ 19	a	With neat functional diagrams and relevant waveforms, Explain the working of	(8)
		Astable multivibrator using IC555 timer.	
	b	Design a square waveform generator using op-amp for a frequency of 1KHz.	(6)
20	a	Draw and explain the circuit of a Schmitt trigger circuit using op-amp. Explain	(7)
		the terms UTP and LTP of a Schmitt trigger.	
	b	Explain the principle of operation of a PLL IC 565 with the help of a block	(7)

diagram.

Page 3of 3