0800EET205122102

Pages:

Reg No.: Name:	AND LONG	*	68.4	1	6
•	-24		1 2	14.	6
	- 3	10			- 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (R, S) / S1 (PT) (S, FE) Examination December 2023 (2019 Scheme)

Course Code: EET205 Course Name: ANALOG ELECTRONICS

		Course Name: ANALOG ELECTRONICS	
N	Max. Mar	ks: 100 Duration:	3 Hours
		PART A	
		Answer all questions. Each question carries 3 marks	Marks
	1	List the factors to be considered while selecting the operating point of a	(3)
		transistor in an amplifier circuit.	
	2	What is the role of emitter bypass capacitor and coupling capacitors in an	(3)
		amplifier circuit?	
	3	Sketch the transfer characteristics of an n channel JFET given $I_{DSS} = 15 \text{mA}$	(3)
		and $V_p = -6V$.	
	4	Define transconductance of JFET.	(3)
	5	State and explain Bark-hausen's criteria for sustained oscillations.	(3)
	6	A feedback amplifier has a voltage gain of 300 without feedback. Determine	(3)
		the voltage gain with feedback if feedback ratio is 0.2.	
	7	Write any six characteristics of an ideal operational amplifier.	(3)
	8	Design a non-inverting amplifier for a gain of 12.	(3)
	9	Derive the output voltage equation of an ideal differentiator with circuit	(3)
		diagram.	
	10	Explain zero crossing detector circuit with diagram and waveforms.	(3)
V*		PART_B .	
	Ans	swer any one full question from each module. Each question carries 14 marks	
		Module 1	
. 7	11 (a)	Design a voltage divider bias circuit for an operating point of $I_C = 2mA$ and	(10)
	1.0	$V_{CE} = 8V$. Given $V_{CC} = 20V$, $\beta = 100$, $V_{BE} = 0.7V$, $V_E = 2V$.	
	(b) -	Define stability factor. Derive an expression for stability factor.	(4)
	12 (a)	Draw the small signal ac equivalent circuit of common emitter amplifier	(10)
		using h parameters. Also derive the expressions for voltage gain, current	
		gain, input impedance and output impedance.	
	(b)	How bias compensation is done using diodes?	(4)

0800EET205122102

Module 2

13 (a	Explain, with neat diagram, the construction and working of n-channel	(10)
	enhancement mode MOSFET.	
\ (t	Explain the hybrid pi model of BJT.	(4)
14 (a	Draw the frequency response of common emitter amplifier. State the reasons	(7)
	for reduction of gain at low frequencies and high frequencies.	
(t	Using small signal equivalent circuit, derive the expression for voltage gain	(7)
	of common drain JFET amplifier.	
	Module 3	
15°(a	Define conversion efficiency of power amplifier. Derive the maximum	(7)
	conversion efficiency of transformer coupled class A power amplifier.	
(b	Design a RC phase shift oscillator circuit for a frequency of 2 kHz.	(7)
16 (a	Derive the expression for frequency of oscillation of Wein bridge oscillator	(10)
	circuit with neat diagram.	
(b	Mention the merits and demerits of transformer coupled amplifier.	(4)
	Module 4	
17 (a	Determine the output voltage of an op-amp for input voltages of	(7)
	$V_1 = 120 \text{ mV}$ and $V_2 = 110 \text{ mV}$. The amplifier has a differential gain of	
	$A_d = 4000$ and the value of CMRR is 100.	
(b	Explain the concept of virtual ground. What is the limiting value of output	(7)
	voltage of an op-amp. Justify your answer.	
18 (a	Design a summing amplifier that satisfies the output equation	(7)
	$V_0 = -(V_1 + 5V_2 + 2V_3).$	
(b	Explain instrumentation amplifier with diagram.	(7)
	Module 5	ĸ
19 (a)	Explain the working of Schmitt trigger circuit with diagram and waveforms.	(7)
(b)	Explain the working of triangular wave generator using op-amp with diagram	(7)
	and waveforms.	•
20 (a)	Draw and explain the internal diagram of 555 timer IC.	(7)
(b)	Design an astable multivibrator using 555 timer for an output wave of 60%	(7)
	luty cycle at a frequency of 2 kHz.	