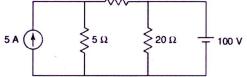
Reg No.:

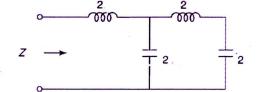
Name: 08000ECT205122302 APJ ABDUL KALAM TECHNOLOGICAL UNIVE


B.Tech Degree S3 (R, S) / S1 (PT) (S, FE) Examination December 2023 (2019 Scheme

Course Code: ECT205 Course Name: NETWORK THEORY

Max. Marks: 100

Duration: 3 Hours


PAKIA		
•	Answer all questions. Each question carries 3 marks	Marks
1	Differentiate dependent and independent sources.	(3)
2	Explain the concept of super-mesh with the help of a suitable example.	(3)
3	State reciprocity theorem.	(3)
4	Find the current through 20 Ω resistor using superposition theorem.	(3)
	10 Ω	

5 State the initial value theorem and find the initial value of the function, f(t) which (3) have Laplace transform, $F(s) = \frac{s^2 + 1}{s(2s+3)(s+5)}$.

6 Find the expression for the current through an *RC* circuit due to impulse as input.

- 7 State the properties of a network transfer function.
- 8 Find the driving point impedance function of the following network.

- 9 Derive the conditions of reciprocity in a two-port network in terms of its (3) transmission parameters.
 10 Consider a two-port network with the open circuit impedance parameter matrix (3)
 - $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$. Check whether the network is symmetric and reciprocal.

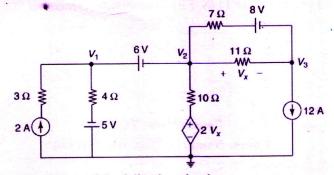
PART B

Answer any one full question from each module. Each question carries 14 marks

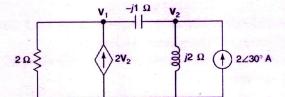
Module 1

11 *a.* Using node analysis determine the voltage V_x .

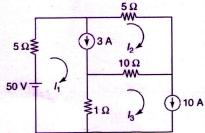
Page 1of 4

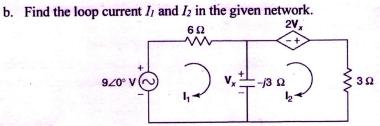

(8)

(3)

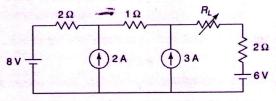

(3)

(3)


08000ECT205122302



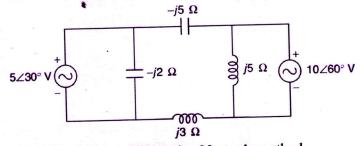
b. Find the node voltages of the following circuit.


a. Find the current through 10Ω resistor using mesh analysis. 12

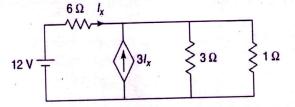
Module 2

a. Find the value of R_L such that maximum power is transferred to it. Also find the (7) 13 maximum power transferred to R_L

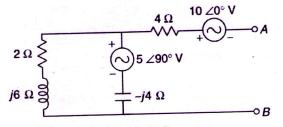
b. Find the current through $j3 \Omega$ using superposition theorem.


(6)

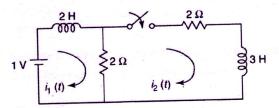
(6)


(8)

(7)


08000ECT205122302

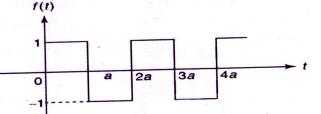
a. Find the current through 1Ω resistor using Norton's method. 14



b. Obtain the Thevenin's equivalent of the network with respect to terminals AB.

Module 3

a. In the circuit, the switch is closed at t = 0. Determine current through the inductor (8) 15 with inductance 3H for t > 0. Assume the steady state being reached before t = 0.



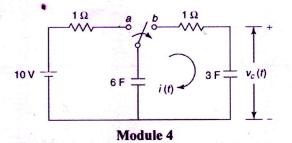
b. Find the Laplace transform of the following signals

i)
$$\int_{a}^{t} e^{-4t} \sin 2t$$

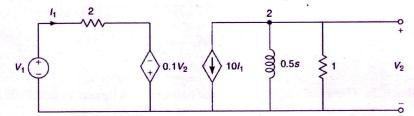
ii)
$$\frac{1-e^{-1}}{1-e^{-1}}$$

a. Find the Laplace transform of the waveform f(t). 16

(8) b. In the given network, the switch is moved from position a to b at t = 0. Determine the voltage, Vc(t).

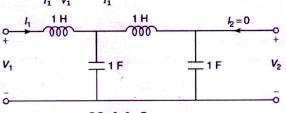

(8)

(6)

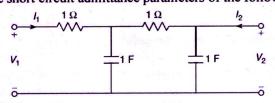

(6)

(6)

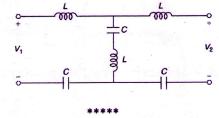
08000ECT205122302



17 a. Find the driving point admittance function, $Y_{11} = \frac{I_1}{V_1}$ of the following network. (6)


b. The voltage of a network is given as $V(s) = \frac{(s+2)(s+6)}{(s+1)(s+5)}$. Plot the pole-zero (8) diagram and hence obtain V(t).

18 Find the network functions $\frac{V_1}{I_1}, \frac{V_2}{V_1}$ and $\frac{V_2}{I_1}$ of the following network. (14)



Module 5

a. Express the transmission parameters in terms of Z-parameters and h-parameters. (7)
 b. Determine the short circuit admittance parameters of the following network. (7)

- 20 a. Show that when 2 two-port networks are connected in series, the resultant Z- (6) matrix is the sum of Z-matrices of each individual network.
 - b. Find the open circuit impedance parameters of the following circuit using the (8) concept of series interconnection of two-port networks.

Page 4of 4