0800CST203122103

Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (R, S) / S1 (PT) (S, FE) Examination December 2023 (2019 Scheme)

Course Code: CST203

Course Name: Logic System Design

Max. Marks: 100

Duration: 3 Hours

THU

Pages

PART A

	Answer all questions. Each question carries 3 marks	Marks
1	*Convert the decimal number 250.5 to base 7 and base 8.	(3)
2	Represent the decimal number 8623 in BCD, Excess-3 code and 2421 code.	(3)
2	Using the postulates and theorems of Boolean algebra, simplify the expression	(3)
	(A+B)'(A' +B')'	
4	A bank vault has three locks with a different key for each lock. Each key is	(3)
	owned by a different person. In order to open the door, at least two people must	
	insert their keys into the assigned locks. The signal lines A, B and C are 1 if	
	there is a key inserted into lock 1, 2 or 3 respectively. Write a minimized	
	Boolean expression for the variable Z which is 1 iff the door should open.	
5	A combinational circuit is defined by the following three functions.	(3)
	$F_1 = x'y' + xyz'$ $F_2 = x' + y$ $F_3 = xy + x'y'$	
•	Design the circuit with a decoder and external gates.	
6	Design a combinational circuit to check for odd parity of four bits.	(3)
7	What are ripple counters?	(3)
8	Convert SR to T flipflop.	(3)
9 "	Convert $(17.5)_{10}$ to 32-bit single precision IEEE 754 binary floating point standard.	(3)
10	Find the modulus of 8-bit Ring, Johnson and Synchronous counter.	(3)

PART B

Answer any one full question from each module. Each question carries 14 marks Module 1

11 a) Perform the following operations (6) i) $(367)_8 + (715)_8$ ii) $(56A.49)_{16} + (98B.5A)_{16}$ iii) $(1230)_4 + (23)_4$

С

0800CST203122103

		b)	Perform the following	(8)
			 i) BCD subtraction (7235)₁₀ - (346)₁₀ in 10's complement method. ii) Subtract (9F2C)₁₆ from (A96B)₁₆ in 15's complement method. 	
1	2	a)	Perform the following operations using 2's complement representation	(6)
			i) (+12) - (+50) ii) (+85) - (+43)	
		b)	Convert the following numbers from the given base to the bases indicated.	(8)
			i) Octal 623.77 to decimal, binary and hexadecimal.	
			ii) Hexadecimal 2AC5,D to decimal,octal and binary.	
			iii) Decimal number 85 to BCD and Excess-3 code.	
		•	Module 2	
1	3	a)	Implement F(A, B, C) = Σ_m (0, 1, 5) using only NAND gates.	(7)
		b)	Simplify the Boolean expression $Y(A,B,C,D)=\prod_{M} (0, 1, 3, 5, 6, 7, 10, 14, 15)$	(7)
			using K-map in Product of Sums form.	
1	4	a)	Simplify F(a,b,c,d)= $\Sigma(1,3,4,5,9,10,11) + \Sigma_d$ (6,8) using tabulation method.	(10)
		b)	Implement AND gate using only NOR gates.	(4)
			Module 3	(.)
1:	5	a)	Explain the operation of a 4-bit magnitude comparator circuit with a neat logic	(10)
			diagram.	(10)
	1	b)	Construct a full adder using two half adder circuits.	(4)
10	5 8	a)	Draw the circuit of a BCD adder and explain its working.	8)
	1	b)	Implement F(A,B,C,D)= $\sum_{m}(0,1,3,4,8,9,15)$ using 8 x 1 MUX	(6)
			Module 4	(0)
17	7 8	a)	Design a synchronous counter with the following binary sequence 0, 1, 3,7,6,4	(10)
			and repeat. Use T flipflops	(10)
*	ł	b)	The truth table of AB flinflon is given as	
		-,	$\begin{bmatrix} A \\ B \\ Q_{n+1} \end{bmatrix}$	~(4)
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			1 1 1	
			Write the excitation table and characteristic equation of AB Flipflop.	
18	a	ı)	Explain how a master slave flipflop eliminates race around condition.	(7)
	b)	Draw the logic diagram and timing diagram of a mod-5 ripple counter.	(7)

0800CST203122103

Module 5

19	a)	Draw a flowchart and explain the addition/subtraction of binary numbers in	(10)
		sign-magnitude form.	
	b)	Draw the logic diagram of a 5-bit Johnson counter.	(4)
20	a)	Implement a 4-bit bidirectional shift register with parallel load.	(8)
	b)	Design a BCD to Excess -3 code converter using ROM.	(6)