1100RAT301122201

Reg No.:_____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2023 (2019 Scheme)

Course Code: RAT 301

Course Name: INTRODUCTION TO ROBOTICS

Max. Marks: 100

Duration: 3 Hours

Marks

Pages:

OVC

PART A

(Answer all questions; each question carries 3 marks)

1		Define degrees of freedom. What is the minimum number of degrees of freedom			
		that a robot needs to have to locate its end effector at an arbitrary point with an			
		arbitrary orientation in space?			
2		Explain 3R concurrent wrist.	3		
3		Distinguish between fundamental and composite rotation matrix.	3		
4		A mobile frame M is rotated about the fixed frame F by an angle $\pi/2$ about the f ²	3		
		axis. Determine the fundamental rotation matrix			
5		Differentiate joint space and cartesian space description.	3		
6		Define straight-line trajectory.	3		
7		Explain the Euler-Lagrange equation for dynamic modelling.	3		
8		What are the disadvantages of single-axis PID control?	3		
9		What are the core issues faced by wheeled robots	3		
10		What are optical encoders? Explain with a diagram.	3		
PART B					
(Answer one full question from each module, each question carries 14 marks)					
Module -1					
11	a)	Explain the anatomy of a robot manipulator.	8		
	b)	Explain SCARA.	6		
12	a)	With suitable diagrams, explain the various robot configurations.	7		
	b)	Write a short note on different types of grippers	7		
Module -2					
13	a)	A point p with a position as $[7,3,1]^{T}$ is attached to frame M and subjected to the	7		

following transformation:

i) Rotation of 90° along the z-axis

1100RAT301122201

- ii) Followed by rotation of 90° along the y-axis
- iii) Followed by translation of [4,-3,7]

Find the coordinate of the point relative to the fixed frame

b) Write the algorithm for DH representation.

¥

- 14 a) Determine all the fundamental rotation matrices along the x, y, and z axis with 6 suitable axis rotation diagrams
 - b) Obtain the D-H Parameters of a two-link planar arm. Also, derive its forward 8 kinematic equations.

7

6

6

Module -3

- 15 a) It is desired to have the fifth joint of a 6-axis robot go from an initial angle of 20° 8 to a final angle of 60° in 5 seconds. Plan a third-order (cubic) polynomial for this requirement with a drawing of the displacement, velocity and acceleration profiles.
 - b) Explain how the A* algorithm can be used in robot trajectory planning.
- 16 a) Describe the application of cubic polynomials to trajectory planning in joint space. 8
 - b) Explain potential field-based path planning for robots.

Module -4

17 a) Derive the force-acceleration relationship for the 1-DOF system shown in Figure 5 below, using both the Lagrangian mechanics. Assume the wheels have negligible inertia.

1100RAT301122201

- b) Derive the closed loop transfer function of single-axis PID control with the 9 necessary block diagram.
- 18 a) Derive the dynamic model of a 1 DOF robot, including the motor and gearbox. 6
 - b) Derive of the equations of motion for the 2-DOF 2R planar manipulator robot arm, 8 shown in Figure below. The centre of mass for each link is at the centre of the link. The moments of inertia are I₁ and I₂.

Module -5

19	a)	Write a short note on the industrial application of robots.	7
	b)	Explain the robot considerations for an application.	7
20	a)	Define the various sensor characteristics.	7
•	b)	Explain open loop and feedback control with necessary diagrams.	• 7
