1100CST301122204

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERS

B.Tech Degree S5 (R, S) / S5 (PT) (R, S) Examination December 2023 (20

Course Code: CST 301

Course Name: FORMAL LANGUAGES AND AUTOMATA THEORY

Max. Marks: 100

Duration: 3 Hours

	PART A	
	(Answer all questions; each question carries 3 marks)	Marks
1.	Draw transition diagram for NFA (without ϵ -moves) for strings starting with '10'	3
	or '11'. $\Sigma = \{0,1\}.$	
2	Design a DFA for strings in which fist and last letters do not match. $\Sigma = \{a, b\}$.	3
3	Give a regular expression for the set of all strings not containing 101 as a	3
	Substring.	
4	State the closure properties of regular language.	3
5	Explain with the help of example ambiguous grammar.	3
6	Write CFG equivalent to the regular expression $0*1(0+1)*+1$.	3
7	What are the conditions required for push down automata to qualify as	3
,	deterministic push down automata?	
8	Can we construct a DPDA for the language wwr? Justify your answer.	3
9	Differentiate Recursive and Recursively Enumerable Languages.	3
10	Design a TM to find the 1's complement of a binary number.	3

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

- 11 a) Construct an ϵ -NFA for the language L= { $0^{n}1^{m}2^{p} / n,m,p \ge 0$ } and convert it into 8 equivalent DFA.
 - b) Design a DFA for strings in which number of a's is multiple of 3 and number of 6
 b's is multiple of 2. Σ = {a, b}.
- 12 a) Draw the state-transition diagram showing an NFA N for the following language 7

1100CST301122204

L. Obtain the DFA D equivalent to N by applying the subset construction algorithm.

 $L = \{x \in \{a, b\} * | x \text{ contains 'bab' as a substring} \}.$

b) Construct a regular grammar for L= $\{0^n \ 11 | n \ge 1\}$. Construct deterministic finite 7 automata for the same.

Module -2

7

7

7

7

7

7

13 a) Find the Regular Expression for the following DFA

b) Obtain the minimum state DFA from the following DFA

- 14 a) Develop equivalent automata for the R.E. $(ab + b)^*(a+bb)^*a^*$.
 - b) Using Pumping Lemma for regular language prove that the language $L=0^{n}$ |n is 7 perfect square} is not regular.

Module -3

- 15 a) State Myhill- Nerode Theorem. Prove the language L={aⁿbⁿ,where n>=1 is not 7 Regular using Myhill-Nerode Theorem.
 - b) Convert the grammar $\{S \rightarrow AaCb / ABa, A \rightarrow bAa / a, B \rightarrow BaB / b, C \rightarrow c\}$ to CNF
- i 6 a) Convert the Context-Free Grammar with productions: ${S→ aSb|ε}$ into Greibach Normal form.
 - b) Convert the Context-Free Grammar with productions: $\{S \rightarrow aSa|bSb|SS|\epsilon\}$ into Chomsky Normal form.

Module -4

- 17 a) Design a PDA for the language L= { WW^r| W ∈ {a,b}* }. Also illustrate the 7 computation of the PDA on the string 'aabbaa'.
 - b) State Equivalence theorem between empty stack PDA and Final State PDA. 7
- 18 a) Design a PDA for strings in which number of a's is less than number of b's.

1100CST301122204

b) Using Pumping lemma prove the given language is not context free. 7 $L=\{a^nb^{2n}c^n|\text{ where }n>=1\}.$

Module -5

19 a) Define formally Type 0, Type 1, Type 2 and Type 3 grammar. Show the 7 corresponding automata for each class
b) Design a TM to find the sum of two numbers m and n. Assume that initially the tape 7 contains m number of 0s followed by # followed by n number of 0s
20 a) Design a Liner Bounded Automata for the language L=aⁿbⁿcⁿ | n>=1 } 7

7

b) Prove that 'Turing Machine halting problem' is undecidable.

2