0800MAT201122101

Reg No.:_____

Name:

ages:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY*

B.Tech S3 (R,S) / S1 (PT) (S, FE) Examination December 2023 (2019 scheme)

Course Code: MAT201

Course Name: Partial Differential equations and Complex analysis Max. Marks: 100 Duration: 3 Hours

PART A

		Answer all questions. Each question carries 3 marks	Marks		
	1	Derive partial differential equation from z = f(x + 2t) + g(x - 2t)	(3)		
	2	Solve $xp + yq = z$.	(3)		
	3	Find the steady state temperature distribution in a rod of length 30 cm if the	(3)		
		ends are kept at 10^0 C and 100^0 C.			
	4	A tightly stretched string of length 50 cm has its ends fastened at $x = 0$ and	(3)		
		x = 50. The midpoint of the string is then taken to height h and then released			
		from rest in that position. Find the initial position of the string.			
	5	Check whether the function $f(z) = \begin{cases} \frac{Re(z)}{1- z }, & z \neq 0\\ 0, & z = 0 \end{cases}$ is continuous	(3)		
		at $z = 0$.			
	6	Is $f(z) = \overline{z}$ analytic. Justify your answer.	(3)		
	7	Evaluate $\int_0^{1+i} (x - iy) dz$ along the straight line path from 0 to 1+i	(3)		
	8	Evaluate $\int_C \frac{dz}{(z^2+1)(z-1)}$ when C is $ z = 0.5$	(3)		
	9	Find the residue of $z\cos\left(\frac{1}{z}\right)$ at $z = 0$	(3)		
	10	State Cauchy's integral formula and Cauchy's residue theorem	(3)		
	Ans	PART B wer any one full question from each module. Each question carries 14 marks			
Module 1					
	(a)	Form the partial differential equation by eliminating the arbitrary function	(7)		

f from the relation xyz = f(x + y + z).

11

0800MAT201122101

	(b)	Solve $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = u$ with the initial condition $u(x, 0) = e^{2x}$ by applying method of	(7)
		separation of variables.	
12	(a)	Solve $\frac{\partial^2 u}{\partial x \partial y} = \cos(x) \cos(y)$ given that $\frac{\partial u}{\partial y} = e^{-y}$ when $x = 0$ and	(7)
	(\mathbf{h})	u = 0 when $y = 0$.	
	(0)	Solve $(y^2+z^2)p - xyq + xz = 0$	(7)
		Module 2	
13	(a)	Derive one-dimensional wave equation.	(7)
•	(b)	Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ with boundary conditions	(7)
		u(0,t) = 0°C, $u(1,t) = 0$ °C and the temperature initially is $u(x,0) = x(1-x)$.	
14	(a)	A homogeneous rod of conducting material of length l has its ends kept at	(7)
		zero temperature and the temperature initially is $u(x, 0) = f(x)$. Find the	
		temperature $u(x, t)$ at any time.	
	(b)	Solve the one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ subject to	(7)
		$u(0,t) = 0, u(1,t) = 0, u(x,0) = 3sin(2\pi x), \frac{\partial u}{\partial t}(x,0) = 0.$	
		Module 3	
15	(a)	Find all points where the Cauchy-Riemann equations are satisfied for the	(7)
		function $f(z) = xy$ and where it is analytic. Give reasoning for your answers.	
	(b)	Show that $u = 2 + 3x - y + x^2 - y^2 - 4xy$ is harmonic. Also find its	(7)
		conjugate harmonic function v.	
16	(a)	Show that the function $f(z) = \frac{1}{z}$ is analytic except at $z = 0$.	(7)
	(b)	Find the image of the triangular region bounded by $x = 1$, $y = 1$ and $x + y = 1$	(7)
		1 under the transformation $w = z^2$.	
		Module 4	
17	(a) (b)	Evaluate $\int_C \frac{1}{(z+4i)(z+i)} dz$, where C is $ z = 2$ using Cauchy's integral formula.	(7)
	(0)	Find the Maclaurin series expansion of $e^z \sin z$.	(7)
18	(a)	Evaluate $\int_C \frac{z^2+z+1}{(z-1)^2} dz$, where C is the circle $ z = 3$ using Cauchy's integral	(7)
	(h)	formula.	
	(0)	Find the Taylor series expansion of $f(z) = \frac{1}{z^2}$ about $z = 2$.	(7)

0800MAT201122101

Module 5

19	(a)	Obtain the Laurent series expansion of $\frac{1}{(z-2)(z-3)}$ in the region	(7)
		(i) z < 1 $(ii) 2 < z < 3$ $(iii) z > 3$	
	(b)	Evaluate $\int_0^\infty \frac{1}{1+x^2} dx$.	(7)
20	(a) (b)	Find the poles and residues of the function $\frac{1}{z^4-1}$	(7)
		Evaluate $\int_0^{2\pi} \frac{1}{3+2\sin\theta} d\theta$	(7)