A

### 0100MAT101032201



# PARTB

Answer one full question from each module, each question carries 14 marks.

## **MODULE 1**

11 a Solve the following linear system of equations using Gauss elimination method (7) x + y - z = 9 8y + 6z = -6 -2x + 4y - 6z = 40

b Find the eigenvalues and eigenvectors of  $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$  (7)

## 0100MAT101032201

12 a Solve the following linear system of equations using Gauss elimination method. (7) 3x - 11y - 2z = -6

$$4y + 4z = 24$$
$$6x - 17y + z = 18$$

b Find the matrix of transformation that diagonalize the matrix  $A = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$ . Also write the diagonal matrix. (7)

#### **MODULE 2**

- 13 a If  $w = x^2 + y^2 z^2$  where  $x = \rho sin \phi cos \theta$ ,  $y = \rho sin \phi sin \theta$ ,  $z = \rho cos \phi$ . Find (7)  $\frac{\partial w}{\partial \rho}$  and  $\frac{\partial w}{\partial \theta}$  using chain rule.
  - b Locate all relative extrema and saddle points of  $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$  (7)
- 14 a Show that the function  $f(x, y) = 2 \tan^{-1}(\frac{y}{x})$  satisfies the Laplace equation (7)  $f_{xx} + f_{yy} = 0$ .
  - b Find the local linear approximation L of  $f(x, y) = \ln(xy)$  at the point P(1, 2). (7) Compute the error in approximation f by L at the point Q(1.01, 2.01).

## **MODULE 3**

15 a Evaluate  $\iint_R (3x - 2y) dA$ , where R is the region enclosed by the circle (7)

$$x^2 + y^2 = 1.$$

(7)

- b Evaluate  $\int_0^1 \int_{4x}^4 e^{-y^2} dy dx$  by reversing the order of integration.
- 16 a Evaluate  $\int_0^2 \int_0^{\sqrt{4-x^2}} y(x^2 + y^2) dx dy$  using polar coordinates. (7)
  - b Let G be the tetrahedron in the first octant bounded by the coordinate planes and the plane  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ , (a, b, c > 0) find the volume of G.

#### MODULE 4

- 17 a Test the convergence of (i)  $\sum_{k=1}^{\infty} \frac{4k^2 2k + 6}{8k^7 + k 8}$  (ii)  $\sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^{k^2}$  (7)
  - b Test the convergence of the series  $1 + \frac{1.2}{1.3} + \frac{1.2.3}{1.3.5} + \frac{1.2.3.4}{1.3.5.7} + \dots$  (7)
- 18 a Show that the series  $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$  is conditionally convergent (7)
  - b Test the convergence of (i)  $\sum_{k=1}^{\infty} \frac{(k+3)!}{3! \ k! \ 3^k}$  (ii)  $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{2k-1}}$  (7)

#### **MODULE 5**

19 a Find the Fourier series expansion of  $f(x) = x + x^2$  in the range  $(-\pi, \pi)$ . (7)

# 0100MAT101032201

- b Obtain the half range Fourier sine series of  $f(x) = \begin{cases} x, & 0 < x < 2 \\ 4 x, & 2 < x < 4 \end{cases}$  (7)
- 20 a Find the Fourier series expansion of f(x) = |x| in the range  $(-\pi, \pi)$ . Hence show that  $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$ 
  - b Obtain the half range Fourier cosine series of  $f(x) = x^2$  in 0 < x < 2 (7)

\*\*\*\*