221TME100022303

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester M.Tech Degree Regular and Supplementary Examination December 2023 (2022 scheme

Discipline: MECHANICAL ENGINEERING

Course Code & Name: 221TME100 COMPUTATIONAL METHODS FOR ENGINEERS
Max. Marks: 60
Duration: 2.5 Hours

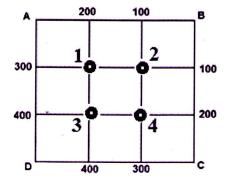
PART A Answer all questions. Each question carries 5 marks

Marks

Pages: 2

- 1 Explain significant figures and truncation error. An approximate value of π is (5) given by 3.1428571 and its true value is 3.1415926. Find the absolute and relative errors.
- 2 By the method of Least squares, find the straight line that best fit the following (5) data

<i>x</i>	1	2	3	4	5
y = f(x)	14	27	40	55	64


3 A function y = f(x) is given by the following table. Estimate the first and (5) second derivatives at 2 (i.e. f'(2) and f''(2)) using a forward difference scheme.

x	0	1	2	3	4
y=f(x)	176	185	194	207	228

4 Solve dy/dx = x + y, y(0) = 1 with h = 0.2 at x = 1 by Euler's method

(5)

- 5 Solve the elliptic equation Uxx + Uyy = 0 for the following square mesh with (5)
- boundary values as shown below using Liebmann method

221TME100022303

PART B

Answer any 5 questions. Each question carries 7 marks

- 6. Find a real root of the equation $x^3 x 11 = 0$ using bisection method, correct to (7) three decimal places.
- 7 Solve the following system of equations by Gauss-Jordan method. (7)

5x - 2y + 3z = 18

$$x + 7y - 3z = -22$$
$$2x - y + 6z = 22$$

8 By the method of least squares, find a second order variation that best fits the data (7)

x	0	. 1	2	3	4
У	1	5	10	22	38

Hence, estimate y (1.5).

9 Evaluate

$$\int_{0}^{1} \frac{dx}{1+x^2}$$

by two point and three point Gassian quadrature formula. Weights and abscissae for two point are $\{1,1\}$ and $\{-0.57735, 0.57735\}$ respectively. Weights and abscissae for three point are $\{0.55555, 0.88889, 0.55555\}$ and $\{-0.77460, 0.00000, 0.77460\}$ respectively.

10 Solve

$$\frac{dy}{dx} = \frac{1}{x+y}$$

with $x_0 = 0$, $y_0 = 2$ at x = 0.4 taking h = 0.2 by Runge-Kutta fourth order method

11 Use Lagrange's interpolation to find the value of y at x = 6 from the following (7) data.

x	3	7	9	10	
у	168	120	72	63	

12 Solve-by Bender-Schmidt's method $U_t = 5U_{xx}$ with conditions $U(0,t) \ 0$, U(5,t) = (7) 60 and U(x,0) = 20x for $0 < x \le 3$, U(x,0) = 60 for $3 < x \le 5$ for 5 time steps having h = 1.

Page 2of 2

1

(7)

(7)