A

1000AIT401122302

	Reg	No ·	Name:	W
	Reg	140	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
Sev	enth	Sem	ester B.Tech Degree Regular and Supplementary Examination December 2023 (201	9 Scho
			TOTHUF	107
			Course Code: AIT401	
			Course Name: FOUNDATIONS OF DEEP LEARNING	
	Ma	x. N	farks: 100 Duration: 3	Hours
			PART A Answer all questions, each carries 3 marks.	Marks
	1		Write down the equations of the following activation functions and its derivatives:	(3)
	. •		Sigmoid, Tanh, ReLu.	
	2		Design a neural network with two hidden layers having single neuron (using	(3)
			ReLU activation) and an output neuron to approximate a function $f(x)=x^2-4x+4$	
			as accurately as possible in the range $x \in [0,5]$.	
	3		Explain the concept of early stopping in neural network training.	(3)
	4		Why is weight initialization crucial in neural network training?	(3)
	5		Explain the concept of a residual block in the context of deep neural networks	(3)
	6		What happens if the stride of the convolutional layer increases? What can be the	(3)
			maximum stride? Justify your answer	
	7		Explain the function of input gate in LSTM	(3)
	8		Explain Recursive neural network.	(3)
i e	9		Draw the general structure of an autoencoder and explain.	(3)
	10		Describe any two applications of GAN.	(3)
			PART B	
			Answer any one full question from each module, each carries 14 marks.	
*			Module I	
	11	a)	What advantages does a deep feedforward network offer over shallow networks?	(4)
		b)	Explain the terms overfitting and underfitting in the context of neural networks.	(10)
			OR	

b) Explain the role of the loss function in a neural network. Discuss the significance

(7)

(7)

12 a) Describe the structure and functionality of a perceptron.

of choosing different loss functions.

1000AIT401122302

Module II

- 13 a) Explain the Kaiming and Xavier weight initialization methods and their (6) significance in deep learning.
 - b) What is Regularization technique? Discuss various regularization techniques (8)

OR

- 14 a) Consider a two-input neuron that multiplies its two inputs x1 and x2 to obtain the output o. Let L be the loss function that is computed at o. Suppose that you know that $\partial L/\partial o = 5$, x1 = 2, and x2 = 3. Compute the values of $\partial L/\partial x1$ and $\partial L/\partial x2$.
 - b) Differentiate between Gradient Descent (GD), Stochastic Gradient Descent (7) (SGD), and Mini-batch Gradient Descent in terms of their working principles.

Module III

- 15 a) Design a Convolutional Neural Network (CNN) for gender classification using (7) face images of size 256 x 256. Determine suitable filter sizes, activation functions, and the width of each layer within the network.
 - b) Discuss the motivation behind using convolutional layers in neural networks, (7) emphasizing their advantages over fully connected layers.

OR

- 16 a) Consider an input image with dimensions of 28 x 28 pixels. You apply a convolutional operation with a kernel (filter) size of 3x3, a padding of 0, and a stride of 2. Calculate the dimensions of the output feature map. Also, calculate the padding value if we need the output to have the same size as the input with a stride of 1.
 - b) What are the key differences between AlexNet, ZFNet, VGGnet-19, and ResNet- (10) 50 in terms of their architectures, performance?

Module IV

- 17 a) Design a multi-layered Recurrent Neural Network (RNN) that takes a sequence of (7) length 'T' as input and generates a single output Context.
 - b) Explain how LSTM addresses the long term dependency issues in language (7) models.

OR

1000AIT401122302

18	a)	Provide an example of how Recurrent Neural Networks are used in language	(7)
		modeling. Explain how RNNs generate sequences.	
	b)	Discuss the important design patterns of Recurrent Neural Networks (RNNs).	(7)
		Module V	
19	a)	Explain the concept of Variational Autoencoders.	(7)
	b)	Discuss the applications of GAN.	(7)
		OR	
20	a)	Describe Boltzmann Machines. How do they learn and generate samples in a	(7)
		probabilistic manner?	
	.b)	Explain Denoising Autoencoders.	(7)