03000EC469122302

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVER

Seventh Semester B. Tech Degree (S, FE) Examination December 2023 (2

Course Code: EC469 Course Name: OPTO ELECTRONIC DEVICES

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks

- a) Define the Franz-Keldysh effect in semiconductors. Explain how electric fields (10) influence the absorption spectrum.
 - b) Discuss applications of the Franz-Keldysh effect in optoelectronic devices and (5) communication systems.
- 2 a) Explain the threshold condition for lasing in a laser system. Discuss the factors that (10) influence this threshold and their impact on the overall performance of the laser.
 - b) Explain the line broadening mechanisms in lasers. Discuss the significance of (5) linewidth in laser applications.
- 3 a) Comment on the absorption of light in semiconductors. Discuss the role of bandgap (9)
 energy in determining the absorption characteristics.
 - b) Describe the differences between direct and indirect bandgap semiconductors and (6) their implications for absorption.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Describe the structure and working of InGaN/GaN LEDs, including the role of (10) InGaN in the emission process.
 - b) Differentiate homo-junction and hetero-junction structures of InGaN/GaN LEDs. (5)
- 5 a) Explain the principles behind generating white light with dichromatic and (8) trichromatic sources, emphasizing the advantages and limitations of each.
 - b) Discuss the temperature dependence of trichromatic sources and its implications (7) for colour stability in lighting applications.

03000EC469122302

- 6 a) Explain the working principles of quantum well electro absorption modulators. (12)
 Discuss how quantum well*structures enhance the modulation capabilities and efficiency of these devices.
 - b) Discuss the principles and applications of optical switching devices

(3)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) A photo diode QE of 65 % when photon energy of 1.5*10 ⁻¹⁹J are incident upon it (10)
 (i) At what wave length is the photo diode operating?
 - . (ii) Calculate incident optical power required to obtain a photo current of $2.5\mu A$ when the photo diode is operating as described above.
 - b) Describe the working principles of PIN photodiodes and Avalanche photodiodes (10)
- 8 a) Explain different types of add and drop multiplexer. (10)
 - b) Describe the structure of thin film transistor display. (10)
- 9 a) Explain the working principles and applications of Liquid Crystal Displays (LCDs) (10) and Polymer Light-Emitting Diodes (PLEDs) in optoelectronics.
 - b) Explain the working principles and applications of Directional Couplers in optical (10) communication systems. Discuss the advantages and limitations of directional couplers.