01000PH100092003

Reg No.:_

Name:

APJ ABDUL KĄLAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (S, FE) S2 (S, FE) Examination December 2023 (2015 Scheme)

Course Code: PH 100

Course Name: ENGINEERING PHYSICS

Max. Marks: 100

Duration: 3 Hours

UTHU

Pages: 2

	PART A Answer all Questions. Each question carries 2 Marks	Marks
1	Give two examples for practical cases of damping.	(2)
2	Distinguish between transverse waves and longitudinal waves.	(2)
3	What are coherent sources?	(2)
4	Define resolving power and dispersive power of a grating.	(2)
5	With a neat diagram explain double refraction.	(2)
6	What are critical temperature and critical magnetic field in superconductivity?	(2)
7	Mention any two properties of a well defined wave function.	(2)
8	Define micro states and macro states.	(2)
9	Distinguish between musical sound and noise.	(2)
10	Explain the thermal detection process for ultrasonic waves.	(2)
11	What are metastable level and population inversion in a laser?	(2)
12	Write a note on intensity modulated fibre optic sensor?	(2)

PART B

Answer any 10 questions. Each question carries 4 Marks

- 13 Write down the differential equation of electrical and mechanical oscillators and (4) give any four points of comparison between the two oscillators.
- * 14 Calculate the frequency of the fundamental note produced by a string, 2m long (4) and weighing 2 gm, kept stretched by a load of 600 kg.
 - 15 Derive the expression for the bandwidth of interference fringes in air wedge (4) experiment.
 - 16 Light of wavelength 589.3 nm is incident normally on a plane transmission (4) grating having 6000 lines/cm. Calculate the angle at which the principal maxima of the first order is formed.
 - 17 What are quarter wave plate and half wave plate? Write down the equations for (4) the thickness of the quarter wave plate and half wave plate.

Page 1 of 2

01000PH100092003

- 18 Explain the properties of Type I and Type II superconductors with graphs. (4)
- 19 Explain the absence of electrons in the nucleus using uncertainty principle. (4)
- 20 Write down any four postulates of Fermi-Dirac statistics.
- Calculate the reverberation time of a hall having volume 4000 m³ and total sound (4) absorption of 160 m² sabine. Find the additional sound absorption required for an optimum reverberation of 1.5 s.

(4)

- Calculate the fundamental frequency of vibration of a quartz crystal of thickness (4)
 8 mm at resonance. Young's modulus and density of quartz are 7.9 x 10¹⁰ N/m²
 and 2650 kg/m³ respectively.
- 23 List any four applications of LASER. (4)
- 24 With diagram explain the working of an LED. Give any two applications of (4) LED.

PART C

Answer any three questions. Each question carries 6 Marks

- 25 Write down the differential equation of a damped harmonic oscillator and obtain (6) its solution. Give conditions and draw displacement -time curve for three cases
- 26 Draw a neat diagram and explain the experimental arrangement for obtaining (6) Newton's rings. Derive an expression for the diameter of nth dark ring in Newton's rings experiment.
- 27 Explain the different steps for detecting light of unknown polarization. (6)

28

Write down Schrodinger equation for a particle in a one dimensional box and (6) obtain its normalized wave functions.

PART D

Answer any three questions. Each question carries 6 Marks

- 29 What are the six major factors affecting acoustics of a building? Suggest their (6) remedies to enhance the acoustic quality?
- 30 What is magnetostriction effect? With a neat diagram explain how ultrasonic (6) waves are produced by a magnetostriction oscillator.
- 31 With necessary diagrams explain the construction and working of Ruby laser. (6)
- 32 .Define numerical aperture of an optic fibre? Derive the expression for numerical (6) aperture of a step index fibre.
