03000EC401122301

A

1

2

3

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S7 (S, FE) / S7 (PT) (S,FE) Examination December 2023 (2015 Scheme) URU

Course Code: EC401

Course Name: INFORMATION THEORY & CODING

Max. Marks: 100

PART A

Duration: 3 Hours

ages: 3

	Answer any two full questions, each carries 15 marks.	Marks		
a)	A continuous signal is bandlimited to 10 kHz. The signal is quantized in 8 levels			
	of a PCM system with probabilities 0.25, 0.2, 0.2, 0.1, 0.1, 0.05, 0.05, and 0.05.			
	Calculate the entropy and the rate of information.			
b)) Prove that mutual information is always non-negative.			
c)	Consider a channel with a transition matrix,			
	$P(Y X) = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$	(5)		
	Identify the type of channel and draw the channel diagram.			
a)	Determine the different entropies $H(X)$, $H(Y)$, $H(X, Y)$, $H(X Y)$, and $H(Y X)$ for	(10)		
	the Joint Probability Matrix given below. Also, verify the relationship between			
	different entropies.			
,	$P(X,Y) = \begin{bmatrix} 0.3 & 0.05 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0.15 & 0.05 \\ 0 & 0.05 & 0.15 \end{bmatrix}$			
b)	Write the positive and negative statements of Shannon's channel coding	(5)		
	theorem.			
•		•		
a)				
	{0.25, 0.25, 0.2, 0.15, 0.15}. Construct a binary code using the Shannon-Fano			
• •	coding procedure and determine the code efficiency.			
b)	Derive the capacity of binary erasure channel with the help of channel diagram.			
c)	For a DMS source with 2 symbols, if one of the symbol probabilities is α , then	(3)		
	determine the entropy of the source. Also plot the entropy graph for different			
	values of a.			

03000EC401122301

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Given an AWGN channel with 4 kHz bandwidth and the noise power spectral (6) density N₀/2 =10⁻⁹ W/Hz. The signal power required at the receiver is 0.1 mW. Calculate the capacity of this channel.
 - b) For a systematic linear block code whose generator matrix is given below, (9)

 $\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$

Find the error detecting and correcting capabilities of the code. Also draw the syndrome computation circuit.

5 a) Derive the expression for differential entropy of a Gaussian distributed random (8) variable with zero mean and variance σ^2 .

b) For a systematic (7,4) linear block code, the sub-matrix P is given by (7)

1	[1	1	1]
D -	1	1	0
r –	1	0	1
	Lo	1	1

Find the generator and parity check matrix of the code. Determine the code vectors corresponding to the message vectors [0010] and [1010].

6 a) Consider the following generator matrix over GF(2) for a linear block code. (8)

 $G = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$

Construct the standard array for this code.

b) With the help of graph, explain the SNR trade off graph of Gaussian channel. (7)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Consider a convolution encoder, given rate 1/3, constraint length L = 3. Given (8) g⁽¹⁾ = (1 0 0), g⁽²⁾ = (1 0 1), g⁽³⁾ = (1 1 1). Obtain the codeword sequence corresponding to the information sequence (11001).
 - b) Explain the construction of generator matrix and parity check matrix of (7) systematic and non-systematic Hamming code with the help of an example.
 - c) What are the features of Reed-Solomon codes? (5)
- 8 a) Draw a (2,1,2) convolutional encoder with the feedback polynomials as $g^{(1)}(D) = (10)$

03000EC401122301

 $1+D+D^2$ and $g^{(2)}(D) = 1+D^2$. Find the codeword polynomial corresponding to the information sequence, $u(D) = 1+D^3 + D^4$. Also draw the state diagram for the given convolutional encoder.

- b) Draw syndrome circuit for a (7,4) cyclic code generated by $g(x) = 1 + x + x^3$. If (10) the received vector r is [0010110], what is the syndrome of r? Explain the circuit with a table showing the contents of the syndrome register.
- 9 a) Explain the Viterbi algorithm for decoding of convolutional codes. (10)
 - b) Generate the codewords corresponding to message vector (1010) and (1100) in (10) systematic and non-systematic form, for a (7, 4) cyclic code with g(x) = 1 + x + x³.