08000ME201122102

Reg No.:____

Name:

APJ ABDUL KAŁAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S, FE) / S1 (PT) (S, FE) Examination December 2023 (2015 Scheme

Course Code: ME201

Course Name: MECHANICS OF SOLIDS (ME, MP, MA, MT, AU, PE, SF) Max. Marks: 100 Duration: 3 Hours

PART A

- Answer any three full questions, each carries 10 marks Marks
 A circular bar of length 1000mm and diameter 30mm is drilled with a bore 10 for a length of 400mm from the right side at the centre of the bar. The diameter of the hole drilled is 10mm. Prepare a sketch. If an axial tensile load of 30kN is applied, how much is the extension of the bar (E = 2 x 10⁵ N/mm²)?
 a) Write the generalized Hook's law for a material that is anisotropic. 5
- b) Calculate the thermal stresses in a bar having a coefficient of thermal 5 expansion α =12x10⁻⁶/°C when the temperature is increased to 70°C. The bar has Young's modulus of 200 x 10⁹N/m² and it is prevented from expansion. Write stress and strain matrix for a 3D state of stress. Explain all terms in the 10
 - Write stress and strain matrix for a 3D state of stress. Explain all terms in the 10 stress matrix with a suitable sketch.
- a) Calculate the torque (T) in the shaft while transmitting 2.5kW power at 2 1200rpm.
- b) State the assumptions and derive the equation for shear stress developed on 8 a circular shaft subjected to torsion.

PART B

Answer any three full questions, each carries 10marks

Draw the shear force and bending moment diagrams for a simply supported 10 beam having a span of 6m and with an overhang of 2m.

Page 1 of 3

2

1

4

3

5

08000ME201122102

Obtain the relation between load, shear force and bending moment for the 10 case of a beam element carrying a load of 'w/metre'.

Find the maximum bending stress for an 'I' section beam of length 10m, 10 carrying a uniform load of 40kN/m.

State the assumptions and derive the flexural formula for pure bending of 10 beams.

10

10

11

6

7

8

9

For a cantilever beam carrying a uniformly distributed load of w/m, find the 10 slope and deflection at the free end using moment area method The stresses at a point bar are 200 N/mm² tensile and 100 N/mm² 10 compressive. Determine the resultant stress on a plane inclined at 60° with the axis of the major stress. Also, find the magnitude of the maximum shear

12

stress.

For the plane stress condition characterized by $\sigma_{xx} = 75 \text{N/mm}^2 \ \sigma_{yy} = 10$ 52.5N/mm², and $\tau_{xy} = 60 \text{N/mm}^2$, determine principal stresses and maximum shear stress using the method of Mohr's circle. Also, determine the inclination of the plane on which maximum principal stress act.

08000ME201122102

The maximum allowable shear stress in a hollow shaft of external diameter 10 equal to twice the internal diameter is $80N/mm^2$. Determine the diameter of the shaft if it is subjected to a twisting moment of 4 x 10⁶ N-mm and a bending moment of 3 x 10⁶ N-mm.

14

13

A 3.2 m long column fixed at both ends has internal and external diameters 10 60mm and 80mm respectively. Determine Rankine's crippling load if crushing stress is 500MPa and Rankine's constant = 1/1600

Page 3 of 3