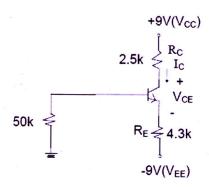
Reg No.:______ Name:_______

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S, FE) / S1 (PT) (S, FE) Examination December 2023 (2015 Scheme)

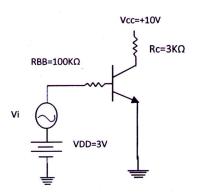
Course Code: EC205

Course Name: ELECTRONIC CIRCUITS (EC,AE)


Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.


Marks

- 1 a) Define operating point of BJT. How does amplifiers are classified according to operating point? (4)
 - b) The operating point values in the circuit IC_Q and VCE_Q have magnitudes of 0.9 mA and 3.72 V respectively when the current gain β for the transistor is 100. The transistor in the circuit is replaced by another one with $\beta = 200$. Calculate the new values of IC_Q and VCE_Q ?

- c) Explain a fixed bias circuit with neat sketches and derive the expression for its stability factor. (5)
- 2 a) Derive the expression for input impedance, output impedance and mid band
 voltage gain of a common emitter amplifier using hybrid π model
 - b) Explain the working of RC coupled amplifier with neat sketches. Explain the factors which affects the low frequency and high frequency response of RC coupled amplifier?
- 3 a) With the help of hybrid pi model calculate the voltage gain of the amplifier (10) given below. Assume $\beta=100$

08000EC205122001

b) Under what condition an RC circuit can be used as an integrator? Design an (5) RC integrator circuit for an input square wave of frequency 2 KHz.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Explain the working of RC phase shift oscillator with a neat diagram. Also (10) derive the expression for frequency of oscillation.
 - b) Explain the working of a stagger tuned amplifier with neat sketches (5)
- 5 a) Draw the small signal high frequency hybrid π model of a transistor in Common Emitter configuration and derive the expression for short-circuit current gain also derive the expression for short circuit gain bandwidth product.
 - b) State and explain Miller theorem and its dual. (6)
- 6 a) Derive the expression for input and output impedances of voltage series, (12) voltage shunt, current series and current shunt feedback configurations with necessary diagrams.
 - b) Draw the circuit diagram of a Cascode amplifier. (3)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Explain the working of a transformer coupled Class B push pull amplifier (10) circuit with neat sketches. Derive the expression for its collector efficiency.
 - b) Design an Astable multivibrator circuit for generating a symmetrical square (6) wave of frequency 1 KHz.
 - c) Derive the expression for the frequency of Oscillation of the BJT Astable (4) multivibrator
- 8 a) Explain the working of a Bootstrap sweep circuit with neat sketches (10)

08000EC205122001

	b)	Explain the short circuit protection for the series voltage regulators	(6)
	c)	Draw the small signal equivalent circuit of MOSFET.	(4)
9	a)	Design a series regulated power supply to provide a nominal output voltage of	(10)
		25 V and supply load current of $I_L \le 1A$. Unregulated power supply has	
		following specifications: Vi=50 \pm 5 V, r0 or Rs= 10 Ω .	
		Assume hfe1=100, hfE1=125, hfe2=200, hfE2=220.	
		Make any other suitable assumptions if required	
	b)	Explain various biasing methods used for MOSFET amplifier with necessary	(6)
		sketches.	
	c)	Explain the Hysteresis curve of the typical Schmitt trigger	(4)
		[1] 전하면 경우 [1] 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전 1 전	

Page 3 of 3