01000MA101062301

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (S, FE) S2 (S, FE) Examination December 2023 (2015 Scheme)

Course Code: MA 101 Course Name: CALCULUS

Max. Marks: 100 **Duration: 3 Hours** PART A Marks Answer all Questions. Each question carries 5 Marks Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{3^{k+1}}$ converges. If so find its sum. 1 (2)a) b) Use alternating series test, determine whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ converge (3) or not 2 a) Find the slope of the surface $z = \sqrt{3x + 2y}$ in the y-direction at the point (2, 5). (2)b) If $f(x, y, z) = x^3 y^5 z^7 + xy^2 + y^3 z$. Find (i) f_{xx} (ii) f_{yy} (iii) f_{zz} (3) 3 Find the velocity vector of the particle, given the acceleration vector (2) a) $\vec{a}(t) = sint \hat{i} + cost \hat{j} + e^t \hat{k}.$ b) Find the directional derivative of $f(x, y, z) = x^2y - yz^3 + z$ at the point (1, -2, (3) 0) in the direction of the vector $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ a) Evaluate $\int_0^1 \int_0^1 \int_0^1 xyz \, dx \, dy \, dz$. (2)4 Find the area enclosed by the parabolas $y^2 = x$ and $x^2 = y$. (3) b) Find the divergence of the vector field $\vec{F} = x^2 \hat{\imath} - 3y \hat{\jmath} - z^3 \hat{k}$ 5 (2) a) Evaluate $\int_C y^2 dx + x^2 dy$ where C is the path y = x from (0, 0) to (1, 1). (3) b) Determine whether the vector field $\vec{F} = yz \,\hat{\imath} - xz^3\hat{\jmath} + x^2 siny \,\hat{k}$ is free of (2)6 a) sources and sinks. . Apply Stoke's theorem to evaluate $\int_C x^2 dx + y^2 dy + z^2 dz$ where C is the (3) b) curve $z = \sqrt{x^2 + y^2}$ below the plane z = 1. PART B **Module I** Answer any two questions. Each question carries 5 Marks Find the Taylor series expansion of $f(x) = \frac{1}{x}$ about x = 27 (5) 8 Test the convergence of (i) $\sum_{k=1}^{\infty} \frac{k^k}{k!}$ (ii) $\sum_{k=1}^{\infty} (\frac{2k-1}{3k+2})^k$ (5)

A

Page 1 of 3

01000MA101062301

9

16

18

sint, $0 \le t \le \frac{\pi}{2}$

Find	the	radius	of	convergence	and	interval	of	convergence	of	(5)
$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(x-5)^k}{(x-5)^k}$										
$\Delta k = 1$	(1)	5 ^k								

Module II

Answer any two questions. Each question carries 5 Marks

10 Find the local linear approximation of $f(x, y, z) = \log (x + yz)$ at the point (5) (2, 1, -1).

11 If
$$u = f(x - y, y - z, z - x)$$
, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ using chain rule. (5)

12 Locate all relative extrema and saddle points of $f(x, y) = 4xy - x^4 - y^4$. (5)

Module III

Answer any two questions. Each question carries 5 Marks

13 If
$$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$
 and $r = \|\vec{r}\|$ then prove that $\nabla f(r) = \frac{f'(r)}{r}\vec{r}$. (5)

- 14 Find the unit tangent vector T(t) and unit normal vector N(t) to the graph (5) $\vec{r} = 5cost \,\hat{\imath} + 5sint \,\hat{\jmath}$ at the point $t = \frac{\pi}{2}$.
- Find the equation of the tangent plane and parametric equations of the normal (5) line to the surface $x^2 + y^2 + z^2 = 25$ at the point (-3, 0, 4).

Module IV

Answer any two questions. Each question carries 5 Marks

- By reversing the order of integration, evaluate $\int_0^1 \int_x^1 \frac{1}{y(1+y^2)} dy dx$ (5)
- 17 Evaluate $\iint_R (x + y) dA$ where R is the region in the first quadrant of the circle (5) $x^2 + y^2 = 1.$
 - Find the volume of the solid in the first octant bounded by the co-ordinate planes (5) and the plane x + y + z = 1

Module Y

Answer any three questions. Each question carries 5 Marks

19	Find $\nabla . (\nabla \times \vec{F})$ and $\nabla \times (\nabla \times \vec{F})$ if $\vec{F} = xy\hat{\imath} + yz\hat{\jmath} + xz\hat{k}$	(5)					
20	Find the work done by the force field $\vec{F} = y\hat{\imath} + z\hat{\jmath} + x\hat{k}$ along the path $x = t$,	(5)					
	$y = t^2$, $z = t^3$ from $t = 0$ to $t = 1$.						
21	Evaluate $\int_C (x^2 + y^2) dx + dy$ where C is the curve given by $x = cost$, $y = cost$.						

01000MA101062301

22 Determine whether the vector field $\vec{F} = 3y^2\hat{i} + 6xy\hat{j}$ is conservative. If so find (5) its potential function.

23 Show that $\int_{(1,2)}^{(4,0)} 3y \, dx + 3x \, dy$ is independent of the path. Also find the value of (5) the integral.

Module VI

Answer any three questions. Each question carries 5 Marks

24

- Use Green's theorem to evaluate $\int_C (x 2y)dx + (3x y)dy$ where C is the (5) boundary of the unit square.
- 25 Use divergence theorem to find the outward flux of the vector field (5) $\vec{F} = (x^2 + y)\hat{i} + z^2\hat{j} + (e^y - z)\hat{k}$ where S is the surface of the rectangular solid bounded by the co-ordinate planes and the plane x = 3, y = 1, z = 2.
- Apply Green's theorem to evaluate $\int_C (-x^2y)dx + (y^2x)dy$ where C is the (5) boundary of the region in the first quadrant enclosed by the circle $x^2 + y^2 = 16$
- 27 Evaluate the surface integral $\iint_{\sigma} x \, ds$ where σ is the part of the plane (5) x + y + z = 2 that lies in the first octant.
- Apply Stoke's theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = xz\,\hat{\imath} + 4x^2y^2\hat{\jmath} + xy\,\hat{k}$ (5) where C is the rectangle $0 \le x \le 1$, $0 \le y \le 3$ in the plane z = y.

Page 3 of 3