16000EC303122301

Reg No.:

Name:

APJ ABDUL KAŁAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S3 (PT) (S, FE) Examination December 2023 (2015 Scheme

Course Code: EC303

Course Name: APPLIED ELECTROMAGNETIC THEORY

Max. Marks: 100

Duration: 3 Hours

(Smith chart to be supplied)

PART A

Answer any two full questions, each carries 15 marks.Marks1 a) A charge of -0.3 μC is located at A (25,-30,15) in cm and a second charge of
0.5 μC is located at B(-10,8,12). Find E at i)origin ii) P(15,20,50) in cm.(8)

- b) Define Ampere's circuit law. Apply Ampere's law to find magnetic field (7) intensity at a point due to infinite line current.
- 2 a) Apply Maxwell's equations to State and illustrate boundary conditions for (7) electrostatic fields.
 - b) Given a non magnetic material having ε_r = 3.2 and σ = 1.75 * 10⁻⁴ S/m. Find at (8) 2.5 Mhz for a) loss tangent b) attenuation constant c)phase constant d)intrinsic impedance

3 a) Find the nature of the following fields by determining divergence and curl (8)

- i) $30 a_x + 2xya_y + 5xz^2 a_z$
- ii) $150/r^2 a_r + 10 a_{\Phi}$
- b) Starting from Maxwell's equation, derive the wave equation for a conducting (7) medium.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Derive Brewster angle. A plane wave is incident from air onto a dielectric (7) medium with $\varepsilon_r = 6 \varepsilon_0$ at an angle 40⁰. What is the refraction angle?
 - b) Derive the expression for reflection coefficient for a wave of parallel (8) polarization, travelling from one medium to another at normal incidence.
- 5 a) A transmission line operating at 500 Mhz has $Z_0 = 80\Omega$, $\alpha = 0.04$ Np/m, $\beta = 1.5$ (8) rad/m. Find all the line parameters.

B

16000EC303122301

	U)	terminated by a load.	(7)
6	a)	Brief on Shorted line, open circuited line and matched load	(9)
	b)	Brief on the different polarization of electromagnetic waves	(6)
		PART C Answer any two full questions each corrige 20 membre	
7	a)	For an infinite transmission line, the characteristic immediates in the second	
	ч)	ohm. Find the input impedance.	(5)
	b)	A 50+j200 Ω load is connected to a 100 Ω lossless transmission line of length	(10)
		0.2λ. Using Smith chart, find	
		a) Reflection coefficient at load	
		b) VSWR	
		c) Input admittance at 0.2 λ from the load	
		d) Reflection coefficient at 0.2 λ from the load	
	С	Explain how transmission line are used as circuit elements	(5)
8	a)	Derive the expression for Electric and magnetic field intensities for TE mode of	(10)
		propagation of rectangular waveguide.	
	b)	If in a rectangular waveguide for which $a= 2b$, the cut off frequency for TE ₀₂ is	(5)
	S	12 Ghz, Calculate the cut off frequency for TM_{11} mode.	
	c)	A rectangular air – filled waveguide has a cross section of 4 $cm \times 10 cm$	(5)
		Find the minimum frequency which can propagation in the waveguide.	
9	a)	Explain stub matching using (i) quarter wave transformer (ii) half wave	(10)
		transformer	
	b)	How do waveguides act as a high-pass filter?	(5)
*	c)	Note down the advantages and disadvantages of waveguides	(5)
