08000EC203122001

Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S, FE) / S1 (PT) (S, FE) Examination December 2023 (2015 Scheme)

Course Code: EC203

Course Name: SOLID STATE DEVICES (EC, AE)

Max. Marks: 100

PART A

Duration: 3 Hours

Marks

(9)

Pages: 2

Answer any two full questions, each carries 15 marks.

- 1 a) Explain the temperature dependence of carrier concentration of an extrinsic (7) semiconductor
 - b) A Si sample with 10^{16} /cm³ donors is optically excited such that 10^{19} /cm³ electron (8) hole pairs are generated per second uniformly in the sample. The laser causes the sample to heat up to 450K. Find the quasi-Fermi levels and the change in conductivity of the sample upon shining the light. Electron and hole life times are both 10 µs, Dp = 12 cm²/s, Dn = 36 cm²/s, ni = 10^{14} cm⁻³ at 450 K. What is the change in conductivity upon shining light?
- 2 a) Explain the variation of mobility with temperature and doping. (7)
 - b) Derive the continuity equation for holes and electrons in a semiconductor. Find the (8) expression for steady state diffusion equations for holes and electrons.
- 3 a) Derive the expression for conductivity and mobility of carriers in a semiconductor (7) subjected to an electric field.
 - b) Show that diffusion length is the average distance a carrier diffuses before it (8) recombines.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) List the assumptions and derive Ideal Diode equation
 - b) Explain the different types of capacitances associated with a p-n junction. (6)
- 5 a) Boron is implanted into an n-type Si sample ($N_d = 10^{16} \text{ cm}^{-3}$), forming an abrupt (9) junction of square cross section with area $2 \times 10^{-3} \text{ cm}^2$. Assume that the acceptor concentration in the p type region is $N_a = 4 \times 10^{18} \text{ cm}^{-3}$. Calculate V_o, X_{no}, X_{po}, Q+ and E_o for this junction at equilibrium (300K).
 - b) Explain the operation of a tunnel diode with appropriate energy band diagram. (6)

08000EC203122001

6	a)	Draw the energy band diagram of a p-n junction at a) equilibrium b) Forward bias	(9)
		c) Reverse bias.	
	b)	With the help of energy band diagrams, explain metal- n type Ohmic contact.	(6)
		PART C	
		Answer any two full questions, each carries 20 marks.	
7	a)	Draw the minority carrier distribution in PNP transistor in saturation mode and explain.	(5)
	b)	The following parameters are given for a transistor $I_{pE} = 0.678$ mA, $I_{nE} = 2.712 \times$	(5)
		10^{-6} A, $I_{pC} = 0.6779$ mA, $I_{nC} = 9.4 \times 10^{-15}$ A. Determine emitter injection	
		efficiency and base transport factor.	
	c)	Draw and explain the C-V Characteristics of an Ideal MOS capacitor. Derive the	(10)
		expression for threshold voltage.	
8	a)	Define the basic performance parameters of BJTs.	(5)
	b)	Explain Base width modulation.	(5)
	c)	With the help of necessary band diagrams, explain equilibrium, accumulation,	(10)
		depletion and inversion stages of a MOS capacitor.	
9	a)	Derive the expression for terminal currents of a transistor. List the assumptions	(10)
		made for the derivation.	
	b)	Explain the principle of operation of FinFET	(5)
	c)	Explain sub threshold characteristics of MOSFET	(5)
			• •

¥

Page 2 of 2