10000CE401122103

Reg No.:____

Name:

APJ ABDUL KAĽAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S7 (S, FE) / S7 (PT) (S,FE) Examination December 2023 (2015 Scheme) IRV

Course Code: CE401

Course Name: - DESIGN OF STEEL STRUCTURES

Max. Marks: 100

Duration: 3 Hours

Page

 \cap

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Explain the concept of shear lag with a neat sketch.	(3)
	b)	Design a double angle tension member connected to each side of a gusset plate to	(12)
		carry a factored load of 400 kN. Use M20 bolts.	
2	a)	Explain different Failures patterns of tension members.	(3)
	b)	Design a double cover butt joint with 8 mm cover plates using ordinary black	(12)
		bolts between two plates of width 200 mm and thickness 10 mm and 20 mm	
		respectively to transmit a factored load of 165kN.Use Fe 410 plates.	
3	a)	What are the different types of bolted connection?	(3)
	b)	A diagonal member of a roof carries a maximum axial pull of 450kN. Design the	(12)
		section.	
		PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)	Distinguish between a slab base and a gusseted base.	(5)
	b)	Design a gusseted base for an axially loaded column to carry a factored load of	(10)
		1900 kN. The column consists of ISHB 400 @77.4 kg/m. The base plate rests on	
*		M 20 concrete foundation. Design the bolted connection between the column	•
		flange and gusset plate. Use 24 mm diameter bolt.	
5	a)	List the elements of a welded plate girder.	(5)
	b)	Design a welded plate girder of span 25 m to carry superimposed load of 35kN/m.	(10)

6 a) Distinguish between laterally restrained and unrestrained beams. (5)

Avoid the use of bearing and intermediate stiffeners. Use Fe 415 steel.

b) A simply supported steel joist of 5m effective span is laterally supported (10) throughout. It carries a total udl of 60 kN inclusive of self weight. Design an appropriate section using steel of grade Fe 410.

A

10000CE401122103

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) A communication tower of 85 m height is proposed to be built over hill top of (5) height 520 m with a gradient 1 in 5. The horizontal approach distance is 2.8 km from the level ground. The tower is proposed at Dehradun. Determine the design wind pressure.
 - b) Design an I section purlin for an industrial building to support a galvanised iron (15) sheet roof.

Given:

Spacing of truss=6 m

Spacing of purlin=2 m

Inclination of rafter to horizontal=29°

Weight of sheet taking into account laps and connecting bolt=135N/m²

Wind Load=1 kN/m²

Imposed snow load =1.5kN/m²

- 8 a) Design a wooden simply supported beam of clear span 5m and carries a UDL of (10)
 13kN/m. The bearing at each end is 30cm. Assume that teak wood is used.
 - b) A bracket is bolted to the flange of a column ISHB 300 @ 577 N/m. Use 8 mm (10)
 - thick bracket plate, M20 bolt of grade 4.6. The load of 300 kN is acting at an eccentricity of 350 mm. Design the Type I connection.
- 9 a) Classify timber based on grades, modulus of elasticity, durability, treatability and (5) location.
 - c) A deodar timber beam carries a udl of 18 kN/n inclusive of self-weight of the (15) beam. The beam is simply supported at both ends. The clear span of beam is 5 m.
 Design the timber beam.

Page 2of 2