02000CST292062201

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth Semester B.Tech (Honours) Degree Examination June 2023 (202) Admission)

Course Code: CST292

Course Name: Number Theory

Max. Marks: 100

Duration: 3 Hours

Pages: 2

PART A

	-	(Answer all questions; each question carries 3 marks)	Marks		
1		State the principle of well ordering.	3		
2		Apply Euclidean Algorithm to compute the GCD of (270,192).	3		
3		Define Fermat prime and Mersenne prime with example.	3		
4		Use Fermat's little theorem to find: $29^{25} \mod 11$.	3		
5		Outline the concept of Carmichael number. Give an example.	3		
6		List out the applications of primitive roots.	3		
7		Define Mobius inversion formula.	3		
8		Define quadratic residues and non-residues modulo a prime p. Find all quadratic residues modulo 11.	3		
9		Explain the theorem for sum of two squares and sum of three squares.	3		
10		State Pell's equation.	3		
		PART B			
		(Answer one full question from each module, each question carries 14 marks)			
11		Module -1			
11	a)	Summarize the properties of Modulo arithmetic and Modulo operator.	7		
۷	b)	Apply Euclidean algorithm to find out the GCD(1492,1066) and express it in terms of Bezout's identity.	7		
12	a)	Find all the solutions of $5x+3y=4$, using Linear Diophantine equations.	7		
	b)	State the relationship between GCD, LCM and product of two numbers a and b. Use it to find the LCM of [1050,2574]	7		
Module -2					
13	a)	Use Chinese Reminder Theorem to solve the simultaneous congruence: x=6(mod 11) $x=12(mod 16) = 70(mod 121) = 10(mod 102)$	9		
	b)	$x=0(\mod 11), x=13(\mod 16), x=9(\mod 21), x=19(\mod 25)$ State Wilson's Theorem. Compute the value of (97!) mod 101 using Wilson's theorem.	5		
14	a)	Explain the concept of Fermat's factorization theorem and use it to factorize the number 5959	7		

H1

02000CST292062201

	b)	State Fermat's Little theorem. Show how computations can be simplified using Fermat's Little theorem by computing the value of $2^{35} \mod 7$.	7
		Module -3	
15	a)	With the aid of a figure, explain the concept of Symmetric key Encryption. Also mention it pros and cons.	10
	b)	What are the challenges faced in public key crypto systems?	4
16	a)	When can we say that an integer n is a pseudoprime? Check whether the number 341 is pseudo prime number.	6
	b)	Explain Euler Totient function with example. What is the value of $\phi(n)$ when n is a composite number and use it to compute (i) ϕ (240) (ii) ϕ (49).	8
		Module -4	
17	a)	State the generalised law of Quadratic reciprocity and hence evaluate the Jacobi symbol $\left(\frac{221}{399}\right)$	8
	b)	Prove that 45 is not a quadratic residue modulo of 47.	6
18	a)	State and prove the properties of Legendre Symbol.	6
•	b)	Find the following values of the Legendre symbols: (113/127), (113/131), (113/137), (210/229)	8
		Module -5	
19	a)	Express 28 as a sum of four squares.	6
	b)	Apply the theorem of Gaussian Integer unique factorization for the numbers 45 and 65 to count in how many different ways can it be written as a sum of two squares?	8
20	a)	Using the theory of Pell's equation and understanding the fact that, $3+2\sqrt{2}$ yields the least solution of $x^2 - 2y^2 = 1$, explaining the method illustrate how to find the two new solutions for the same.	8
	b)	Express $\sqrt{13}$ as an infinite simple continued fraction.	6