0400CST438052302

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Eighth Semester B. Tech Degree Supplementary Examination October 2023 (2019 Scheme

Course Code: CST438

Course Name: IMAGE PROCESSING TECHNIQUE

Max. Marks: 100

Duration: 3 Hours

Pages JDU

PART A

	Answer all questions, each carries 3 marks.	Marks
1	Explain any 3-interpolation technique	(3)
2	Given an image representation model and describe how the representation can	(3)
	changes in different types of images.	
3	What is the need for image transform	(3)
4	Compute Hadamard transform of the image	(3)
	$\begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$	
5	Explain about Clipping and Thresholding.	(3)
6	What is the effect of Homomorphic Filtering while enhancing an image?	(3)
7	Explain the significance of adaptive thresholding compared to global	(3)
	thresholding.	
8	Specify the significance of the Zero crossing detector.	(3)
9	Explain Closing and Opening morphological operations with examples.	(3)
10	Define boundary. Explain how boundary is used in representing images.	(3)

PART B

Answer any one full question from each module, each carries 14 marks.

Module I

11	a)	Explain simple image formation with the help of a neat diagram.	(8)
	b)	Explain the types of arithmetic and logical operators in image processing.	(6)
	2	OR	
12	a)	Explain in detail different image file format.	(6)

b) Explain colour fundamentals in image. (8)

0400CST438052302

Module II

13 a)	a)	Derive 4 order DFT*transform coefficient derivation.		
	b)	Determine whether the given matrix is unitary or not		(9)

$$\mathsf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

OR

14 a)	a)	State the advantages	of Discrete	Cosine	Transform	over	Discrete	Fourier	(5)
		Transform.							

b) Compute the inverse 2D DFT of the transform coefficients F(k,l) given below. (9)

	64	0	0	0	
f(k 1) -	0	0	0	0	
I(K,I) -	0	0	0	0	
	0	0	0	0	

Module III

15	a)) Explain the following point operations: (i) Bit Extraction. (ii). Intensity Level			
		Slicing. (iii). Range Compression.			
	b)	What are the steps to be followed for filtering in the frequency domain?	(5)		
		OR			
16	a)	Explain the following image enhancement techniques in Frequency domain	(8)		
		i) Gaussian High pass filter			
		ii) Butterworth high pass filter			
	b)	Explain spatial averaging and spatial low pass filtering.	(6)		
		Module IV			
17	a)	Define the process of image restoration. Explain any 4 important noise	(9)		
		probability functions			
	b)	Explain region-based segmentation.	(5)		
		OR			
18	a)	Discuss the importance of adaptive filters in image restoration system.	(8)		
		Highlight the working of adaptive median filters.			
	b)	Explain region growing and region splitting and merging techniques.	(6)		
r.	•	Module V			
19	a)	Explain the following (i). Polygon approximation approaches. (ii) Boundary	(8)		
		Following			

0400CST438052302

b)	Explain and illustrate Hit or miss transform morphological algorithm with an				
	example.				
		OR			

20 a) Elucidate the use of chain codes to represent the boundary in an image. (8)
b) Explain opening and closing operations with example. (6)

Page 3of 3