0100CYT100122101

B

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Regular and Supplementary Examination June 2023 (2019 Scheme)

Course Code: CYT 100 Course Name: ENGINEERING CHEMISTRY (2019 -Scheme)

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions, each carries 3 marks	Marks			
1	Write anode, cathode reactions and Nernst equation for the net cell reaction	(3)			
	2 Al (s) + 3 Fe ²⁺ (aq) \rightarrow 2Al ³⁺ (aq) +3 Fe (s).				
2	What is galvanic series?	(3)			
3	Which of the following compounds will have highest λ_{max} in UV-vis spectrum?	(3)			
	Give reason				
	a.) b. , c. , d. ,				
4	The C=C stretching absorbs at higher wave number (~1600 cm ^{-1}) compared to	(3)			
	C–C stretching (~1200 cm ^{-1}). Give reason				
5	What is retention factor and retention time? Elucidate the need of them in	(3)			
	chromatography				
6	Discuss the principle involved in DTA	(3)			
7	Draw the Fischer projection formula for R-isomer of 2-butanol	(3)			
8	Discuss the structure of KEVLAR and give reason for its high strength	(3)			
9	Calculate the temporary and permanent hardness of a sample water containing	(3)			
	14.6 mg/L of Mg(HCO ₃) ₂ , 81 mg/L of Ca(HCO ₃) ₂ , 68 mg/L of CaSO ₄ .				
10	What is disinfection? Give the advantages and disadvantages of UV disinfection	(3)			
	of water.				
PART B					

Answer one full question from each module, each question carries 14 marks. MODULE 1

11 a Write the cell reactions and cell representation of Zn-Ag Cell. Given that E^0 (7) Zn²⁺/Zn= -0.76V and $E^0 Ag^+/Ag = +0.80V$. Calculate the emf of the cell at 25°C when concentration of Zn²⁺ =0.1M and Ag⁺ = 0.01M.

Page **1** of **2**

0100CYT100122101

- Explain the working of calomel electrode with diagram. Calculate the potential (7) of calomel electrode in 0.1 M KCl solution and in saturated KCl solution (4.53M), Given that E⁰ standard calomel =0.2810V at 25°C.
- 12 a Discuss potentiometric titration taking the case of redox titration with the help of (10) graphs. What are its advantages?
 - b Calculate the single electrode potential of Pt/Fe³⁺/Fe²⁺ electrode at 25°C, when (4) concentration of Fe²⁺= 0.01M and Fe³⁺ = 0.1M. Given that E^0 Fe³⁺/Fe²⁺= +0.77V

MODULE 2

13	a	Explain the instrumentation and working of UV-vis spectrometer	(8)
	b	What is Chemical shift? Why tetramethyl silane (TMS) is used as the internal	(6)
		reference in ¹ H NMR spectroscopy?	
14	a	Sketch the modes of vibration possible for HCl, CO ₂ and H ₂ O. Predict the IR	(10)
		activity of each mode of vibration	
	b	What are the applications of NMR spectroscopy?	(4)
		MODULE 3	
15	а	Explain the instrumentation and working of SEM	(8)
	b	What are nanomaterials? Discuss its classification based dimension with	
		examples.	(6)
16	a	Discuss the principle and working of TGA with a neat diagram.	(7)
	b	Explain the principle and steps involved in Column chromatography.	(7)
		MODULE 4	
• 17	a	Discuss conformational analysis of n-butane.	(10)
	b	Compare chain and position isomerism with examples.	(4)
18	а	Explain the construction, working and advantages of OLED	(10)
	b	What is geometrical isomerism? Explain the need for E.Z. notation instead of cis-	(4)
4		trans	•
		MODULE 5	
19	а	Explain the steps involved in sewage treatment with the help of a flow diagram.	(10)
	b	Write any four disadvantages of hard water.	(4)
20	a	Discuss the ion-exchange process of softening of water. How is exhausted resins	(8)

b What is desalination? How it is performed by reverse osmosis process?

(6)

regenerated in an ion-exchange method?
