0100PHT110012202

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Regular and Supplementary Examination June 2023 (2019 Scheme

Course Code: PHT 110 Course Name: ENGINEERING PHYSICS B (2019 -Scheme)

Max. Marks: 100 Duration		: 3 Hours	
	PART A		
	Answer all questions, each carries 3 marks	Marks	
1	What is amplitude resonance? How is the effect of damping related to sharpness	(3)	
	of resonance?		
2	Differentiate longitudinal waves from transverse waves.	(3)	
3	Write down the expression for the radius of n th dark ring in Newton's ring. Explain	(3)	
	with reason what happens to the radius when air is replaced by a liquid of refractive		
	index μ?		
4	What is meant by optical path? Give the relation between geometrical path and	(3)	
	optical path.		
5	What do you mean by quantum confinement in nanomaterials?	(3)	
6	Define nanotechnology. Write any 4 applications of nanomaterials.	(3)	
7	List and explain three characteristics of musical sound.	(3)	
8	What is sonar? Write an application of sonar.	(3)	
9	Write the difference between step index fibre and graded index fibre.	(3)	
10	How is a hologram recorded?	(3)	

PART B

Answer one full question from each module, each question carries 14 marks.

MODULE 1

- a) Write down differential equation of a damped harmonic oscillator and obtain its (10) solution. Show that, in underdamping condition, amplitude is an exponentially decaying quantity.
 - b) A string of mass 0.65 kg is stretched between two supports 30 m apart. If the (4) tension in the string is 160 N, find the velocity of the wave in the string. How long will a pulse take to travel from one support to the other?

0100PHT110012202

- 12 a) Derive an expression for the fundamental frequency of transverse waves in a (10) stretched string. Also state the laws of vibrations of a stretched string.
 - b) The frequency of a tuning fork is 300 Hz and its Q factor is 5×10⁴. Find the (4) relaxation time. Also calculate the time after which its energy becomes (1/10) th of its initial undamped value.

MODULE 2

- 13 a) Explain with the help of figure, how air wedge can be used to determine the (10) diameter of a thin wire. What will be the nature of the fringe pattern if monochromatic source is replaced by white light?
 - b) A plane grating just resolves two lines in the second order. Calculate the grating (4) element, if $d\lambda = 1A^0$, $\lambda = 6000A^0$ and the width of grating is 2cm.
- 14 a) Derive grating equation for a plane transmission grating. Explain the resolving and (10) dispersive powers of a transmission grating with their equations.
 - b) Light of wavelength 5893 A⁰ is reflected at nearly normal incidence from a soap (4) film of refractive index 1.42. What is the least thickness of the film that will appear as dark?

MODULE 3

- 15 a) Write down the Schrodinger equation for a particle in a one-dimensional infinite (10) potential well. Also derive the equation for wave function and energy for a particle in a 1-D Box.
 - b) Calculate the de-Broglie wavelength of electron whose kinetic energy is 10keV. (4)
- 16 a) State Heisenberg's uncertainty principle. Write its mathematical form with (10) different pairs of variables. With the help of it, explain the absence of electrons inside the nucleus of an atom.
 - b) Define surface to volume ratio of nano materials. How surface to volume ratio of (4) nano material is related to the size of the particle.

MODULE 4

- 17 a) Write any five factors affecting acoustics of a hall. How is it remedied? (10)
 - b) A quartz crystal of thickness 0.05m is vibrating at resonance. Find the fundamental (4) frequency. Young's modulus of quartz = 8x10¹⁰N/m² Density of quartz = 2.65x10³Kg/m³.
- 18 a) With a neat circuit diagram explain the principle and working of magnetostriction (10) oscillator.

0100PHT110012202

b) A hall has a volume of 7500m³ What should be the total absorption in the hall, if (4) a reverberation time of 2.3s is to be maintained?

MODULE 5

- 19 a) Explain with suitable diagrams, the principle, construction and working of Helium (10) Neon laser.
 - b) What is the difference between spontaneous emission and stimulated emission? (4)
- 20 a) With a block diagram, explain the working of an optical fibre communication (8) system. Write any three advantages of optical fibre communication?
 - b) Write a note on an intensity modulated and phase modulated fibre optic sensor. (6)
