02000EET204052102

		E SUR EDUCATION CON
Reg No.:	Name:	0 E WX 2 5
	M TECHNOLOGICAL UNIVE	
B.Tech Degree S4 (R,S) / S2 ((PT) (R,S) Examination June 2023	3 (2019 Scheme)
		POTHURU

Course Code: EET204 Course Name: ELECTROMAGNETIC THEORY

			Course Name: ELECTROMAGNETIC THEORY			
	Max. Marks: 100 Duration: 3 Hours					
PART A (Answer all questions: each question carries 3 marks) Marks						
			(Answer all questions; each question carries 3 marks)			
	1		Calculate the gradient of a scalar field, $V=4xz^2+3yz$ at $(1,1,1)$	3		
	2		Check whether the vector field $\mathbf{A}=2z\rho\sin\varphi\mathbf{a}_{\rho}+\rho z\cos\varphi\mathbf{a}_{\varphi}+\rho^2\sin\varphi\mathbf{a}_z$ is irrotational	3		
			or not.			
	3		Using Gauss's law, derive the expression for electric field intensity due to a point	3		
			charge			
	4		What is an electric dipole? Define dipole moment.	3		
	5		Calculate the magnetic field intensity at (0,1,0) if the entire z axis carries a	3		
			current of 2A in the positive z direction.			
	6		Distinguish between displacement current density and conduction current density	3		
	7		A uniform plane wave in free space is given by $H=0.1\cos(2\times10^8t-\beta x)a_y$ A/m.	3		
			Calculate the value of β .			
	8		Calculate the intrinsic impedance of a lossless dielectric if its relative	3		
			permeability is 8 and relative permittivity is 2.			
	9		Define standing wave ratio of a transmission line	3		
	10		State the condition for a transmission line to be lossless. How does the	3		
	V4		propagation constant of a lossless line is related to the line parameters?			
			PART B			
(Answer one full question from each module, each question carries 14 marks)						
	Module -1					
	11	a)	Transform the vector $\mathbf{E} = z\mathbf{a_y}$ to spherical coordinates	4		
		b)	Verify divergence theorem for the vector field, $\mathbf{A} = \rho^2 z \mathbf{a}_{\rho} + 3\rho z \sin\varphi \mathbf{a}_{\varphi} + \rho \mathbf{a}_{z}$ in the	10		
			region bounded by a cylinder defined by $0 \le \rho \le 3$, $0 \le \phi \le 2\pi$, $0 \le z \le 4$.			
	12	a)	A point P in space is given by (2, 4, 7) in cartesian system of coordinates. What	4		
			are the coordinates of P in cylindrical system?			

02000EET204052102

	D)	Verify Stoke's theorem for the vector field, $\mathbf{F} = x^2 y \mathbf{a}_x - y \mathbf{a}_y$ over the contour 1			
		formed by rectangle with corners $(0,0,0)$, $(2,0,0)$, $(2,1,0)$ and $(0,1,0)$.			
		Module -2			
13	a)	A point charge of 50pC is located at (2,1,3) while the x-axis carries a charge of	9		
		2nC/m. The plane z=3 carries 10nC/m ² charge. Calculate the electric field			
		intensity at (2,2,2).			
	b)	Derive the expression for capacitance of a coaxial cable	5		
14	a)	A point charge of 4nC is located at $(-4,5,0)$ while the line $x=1$, $z=1$ carries	9		
		uniform charge 3nC/m. If V=0V at origin, find V at point A (3,2,1).			
	b)	Using Gauss's law, derive an expression for electric flux density due to a	5		
		uniformly charged sphere			
		Module -3			
15	a)	Derive the expression for magnetic field intensity on the axis of a circular loop	10		
		carrying current I.			
	b)	Given the magnetic vector potential $\mathbf{A} = \frac{-\rho^2}{4} \mathbf{a_z}$ Wb/m, calculate the magnetic	4		
		flux density at the point (3,4,0).			
16	a)	Derive the magneto-static boundary conditions at the interface between two	10		
		different magnetic media.			
	b)	Explain the modification required to make Ampere's circuital law consistent	4		
		under a time varying field.			
		Module -4			
17	a)	Derive electromagnetic wave equations from Maxwell's equations	10		
	b)	At 50MHz, a lossy dielectric material is characterized by permittivity, ϵ =3.6 ϵ 0,	4		
4		and permeability μ =2.1 μ 0 and conductivity, σ =0.08S/m. Compute propagation			
		constant of the medium.			
18	a)	Verify Poynting's theorem for power flow in a coaxial cable	9		
	b)	Given that $\mathbf{H}=0.5e^{-0.1x}\sin(2\pi\times10^6t-2x)\mathbf{a_z}$ A/m, calculate the following	5		
		(i)Attenuation constant (ii) Phase constant (iii) Angular frequency (iv) Direction			
	,	of wave propagation (v) Time period			
	Module -5				
19	a)	Derive wave equations for a transmission line.	10		
	b)	A lossless transmission line having characteristic impedance of 120Ω is	4		

02000EET204052102

operating at angular frequency of 5×10^8 rad/s. If the wave velocity on the line is 2.4×10^8 m/s, Calculate inductance and capacitance per metre length of the line

- 20 a) Define the following terms with reference to wave propagation over a 6 transmission line
 - (i) Propagation constant (ii) intrinsic impedance (iii) voltage reflection coefficient
 - b) The characteristic impedance of a lossless transmission line operating at 80MHz 8 is 72 Ω . If the inductance per metre length, L=0.5 μ H/m, find (i) capacitance per metre length (ii) velocity of wave propagation (iii) phase constant (iv) voltage reflection coefficient if the line is terminated with a load of 60Ω
