1

0300RAT306052201

		lΣ	H	COX	112
Reg No.:	Name:		12/		N. T.
APJ ABDUL KALAM TECHNO	LOGICAL UNIVER	SITY	130	CANDON SON	1.11
Sixth Semester B.Tech Degree Regular and Supplement	entary Examination Ju	ne 202	3 (20	19 Scheme	3 //
			The state of	Mun	<i>p</i> '

Course Code: RAT306 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100 **Duration: 3 Hours**

PART A

Marks Answer all questions, each carries 3 marks. Sketch the signal u(t+4) u(-t+4).

(3)

- 2 (3) Find the fundamental period of the signal $x(t)=\sin 10\pi t + \cos 20\pi t$.
- 3 State the sampling theorem for low pass signals. (3)
- State and prove Parseval's relation for CTFT. (3) 4
- 5 List out 3 properties of ROC. (3)
- 6 Find the DTFT of $\delta[n+3]$ - $\delta[n-3]$ (3)
- 7 What is zero padding? Why is it used? (3)
- 8 Determine the IDFT of $X(k) = \{1,0,1,0\}$. (3)
- 9 Compare radix2 DIF and DIT algorithm. (3)
- 10 Draw the basic butterfly diagram for DIT algorithm (3)

PART B

Answer any one full question from each module, each carries 14 marks.

Module I

- Test the periodicity of the given signals, if periodic find the fundamental period (6)
 - i) u(t).Cos2t

ii)
$$\cos\left(\frac{7}{2}t\right) + \sin 2t + 3\cos\left(\frac{7}{6}t\right)$$
.

- b) Check whether the following signals are energy signals, power signals, neither (8)energy nor power signals.
 - i) $x(t) = e^{-10t}u(t)$
 - ii) $x[n] = \left(\frac{1}{2}\right)^n u[n]$

OR

0300RAT306052201

- a) Determine whether the given systems are static or dynamic, causal or non (10)causal, time invariant or time variant, linear or non linear.
 - i) y[n]=Cos x[n]

ii)
$$\frac{dy(t)}{dt} + 2y(t) = x^{2}(t)$$

Find the even and odd component of the signal $x(t)=(1+t^2+t^3)\cos^2 10t$.

(4)

Module II

Determine the Fourier series expansion of the signal shown in figure. 13

(8)

b) Find the Fourier transform of e-a|t|.

(6)

OR

Determine the Fourier series coefficient of $3Sin4\omega_0t$ 14

(5)

Determine the transfer function and impulse response of the system described by (9) the differential equation.

$$\frac{d^2y(t)}{dt} + 11\frac{dy(t)}{dt} + 24y(t) = 5\frac{dx(t)}{dt} + 3x(t)$$

Module III

Determine the Z Transform and ROC of the signal 2ⁿu[n]-3ⁿu[-n-1].

(6)

 $\frac{3z^{-1}}{(1-z^{-1})(1-2z^{-1})}$ Find the Inverse Z Transform of

(8)

if i)ROC
$$|z| > 2$$
 ii) ROC $|z| < 1$ iii)ROC $1 < |z| < 2$

OR

Find the DTFS representation for

(7)

$$x[n] = 5 + \sin\left(\frac{n\pi}{2}\right) + Cos\left(\frac{n\pi}{4}\right)$$

Find the DTFT of $Sin\left(\frac{n\pi}{2}\right)u(n)$

(7)

0300RAT306052201

Module IV

- Find the 4 point DFT of the sequence $x[n] = Sin\left(\frac{n\pi}{2}\right)$ (8)
 - b) Find the circular convolution of the following sequence. $x[n]=\{1,-1,2,3\} \text{ and } h[n]=\{0,1,2,3\}$ (6)

OR

Perform the linear convolution of the following sequence using overlap add (14) method and overlap save method $x[n]=\{1,2,3,4,5,6\}$ and $h[n]=\{2,1,-1\}$

Module V

- 19 a) Compute the 8 point DFT of x(n) by radix-2 DIT FFT algorithm. (10) $x[n] = \{2,1,2,1,1,2,1,2\}$
 - b) Find the number of complex multiplications and additions involved in calculation of a 512 point DFT, using direct DFT and radix 2 FFT

OF

20 a) Obtain the cascade and parallel form realizations of the system described by the equation (10)

$$y[n] - \frac{1}{4}y(n-1) + \frac{-1}{8}y(n-2) = x(n) + 3x(n-1) + 2x(n-2)$$

b) Obtain the direct form 1 form realizations of the system described by the equation (4)

$$y[n] - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = x(n) + 2x(n-1)$$