С

Reg No.:

Name:

Duration: 3 Hours

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (R, S) / S6 (PT) (R) Examination June 2023 (2019 Scher

Course Code: CET306

Course Name: DESIGN OF HYDRAULIC STRUCTURES

Max. Marks: 100

•	Use of Khosla's Chart, Blench Curves, and Montague Curves are permitted in the
	Examination Hall

Assume suitable design data whichever is necessary

PART A

Answer one	full	question	from each	h module	, each carries	15 mark	S. Marks
------------	------	----------	-----------	----------	----------------	---------	----------

Module I

1	a)	Distinguish between Bligh's theory and Khosla's theory.	(9)
	b)	What are the functions of the fish ladder and divide walls in Diversion head works?	(6)

OR

2	a)	Explain Khosla's method of Independent variables. How will you apply different	(12)
		types of corrections in design of impervious floor of hydraulic structures using	
		Khosla's theory	

b) Explain piping failure of hydraulic structures and state remedial measures (3)

Module II

3	a)	Draw the section of the unlined canal partly in cutting and partly in filling.	(5)

b) What is a Cross Drainage work? Explain the types of Cross drainage work. (10)

OR

4	a)	What are Canal falls? Explain any four types of Canal falls with sketches	
	b)	Compare Kennedy's theory and Lacey's theory	(6)

PART B

Answer any one full question

Module III

5 a) Design a suitable cross-drainage work for the following hydraulic particulars: (25)
Canal
Full supply discharge = 50 cumecs

Bed width = 24.0 m

Bed level = 200.000-

1200CET306052303

Full	supply	depth =	1.25m
------	--------	---------	-------

24

Side slope =1.5 H :1 V

Left bank is 3.0 m wide. Right bank is 4.5m wide and the cross drainage work carries a roadway of 4.5m over it.

Drainage

Maximum flood discharge = 500 cumecs

Bed level = 198.000

High flood level = 200.50m

General ground level = 200.00m

Lacey's silt factor = 1

Rugosity coefficient N = 0.016

b) Prepare the following drawings (not to scale)(15)i. Half-sectional plan at the foundation level(10)ii. Section along the center line of the drain(10)

OR

(25)

frathe

5 8	a)	Design a 1.5 m Sarda fall for a canal having a discharge of 15 currees for the	(25)
		following data	
		Bed level upstream = 108.0 m	
		Side slopes of channel = $1:1$	
		Bed level downstream = 105.5 m	
		Full supply level upstream = 109.5 m	
		Bed width u/s and $d/s = 10$ m	
		Soil is Good loam	
		Khosla's safe exit gradient = $1/6$	
	b)	Prepare the following drawings (not to scale)	
		i. Half-sectional plan at the foundation level	(15)
		ii. Section along the center line of the canal	(10)
		PART C	
		Answer one full question from each module, each question carries 10 marks	
×		Module IV	
7	a)	What are the functions of galleries in dams?	(6)

b) What is the Limiting height of a gravity dam? (4)

OR

1200CET306052303

8	a)	Check the stability of the gravity dam for the following data. Top width $= 5m$,	(10)
		freeboard = 3m, u/s FRL depth = 60m, u/s batter = $1/10$, d/s slope = 0.7H to 1V,	
		u/s remains vertical to a depth of 12m from the top. There is no tail water and silt.	
		Module V	
9	a)	What is a Stilling basin? Explain Type I and Type II stilling basins.	(7)
	b)	Explain the thin cylinder method of design of the Arch dam.	(3)
		OR	
10	a)	Explain the features of Ogee type spillway.	(4)
	b)	Explain in detail the design criteria of an earth dam.	(6)

12

.