0300RAT304052202

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination June 2023 (2019 Scheme)

Course Code: RAT304

Course Name: ELECTRIC DRIVES AND CONTROL

Max. Marks: 100

motor drives.

Duration: 3 Hours

HERU

PART A

	Answer all questions, each carries 3 marks.	Marks
1	Describe the block diagram of an electric drive system	(3)
2	Explain the necessity of starter in dc motor	(3)
3	Explain (i) Latching current and (ii) holding current of an SCR	(3)
4	Compare line commutation and load commutation of an SCR	(3)
5	Explain the operation of chopper in step up mode	(3)
6	Explain the armature control method for speed control of DC motor drives	(3)
7	Describe the impact of harmonics in inverters	(3)
8	Briefly explain sinusoidal PWM	(3)
9	Describe the working of DC Servomotors	(3)
10	Explain the working of microcontroller based permanent magnet synchronous	(3)

PART B

Answer any one full question from each module, each carries 14 marks.

Module I

×11	a)	Describe the different components of load torque (T_1) with equations	(6)
	b)	Explain the construction and working of Permanent Magnet Stepper Motor	(8)
		OR	
12	a)	Illustrate the working of a 3-point starter used in dc motor	(8)
	b)	Explain the characteristics of dc series motor with figure	(6)
		Module II	
13	a)	Illustrate the V-I characteristics and switching characteristics of an IGBT	(10)
*	b)	Explain the structure of a Power MOSFET	(4)

OR

0300RAT304052202

14	a)	Explain the different turn-on methods of SCR	(7)
	b)	Discuss the need of isolation in power semiconductor switching circuits	(7)
		Module III	
15	a)	Illustrate the operation of a single phase fully controlled bridge rectifier with RL	(8)
		load in continuous conduction mode.	
	b)	Describe the operation of a two-quadrant chopper	(6)
		OR	
16	a)	A single-phase controlled full-wave rectifier, has a source of 220 V r.m.s at 50	(6)
		Hz, and is feeding a load R = 20 Ω and L = 40 mH. The firing angle is a 45° and	
		the extinction angle is, $\beta = 230^{\circ}$.	
		(i) Specify whether the current is continuous or discontinuous	
		(ii) Determine the average output voltage and current.	
	b)	Explain the rectifier mode of operation of a single phase fully controlled converter	(8)
		fed dc motor drive	
		Module IV	
17	a)	With circuit diagram and waveforms explain 3-phase bridge inverter with R load	(10)
		and 120° conduction mode.	
	b)	Compare the different voltage control methods in inverters	(4)
		OR	
18	a)	Describe the working of single phase full bridge Voltage Source Inverter with R-	(8)
		load using circuit diagram and waveforms	
	b)	Explain any one method to eliminate the effects of harmonics from inverters	(6)
		Module V	
19	a)	Explain how power electronic converter circuits are used in BLDC motor for	(8)
		speed control.	
	b)	Explain self control in PMSM	(6)
		OR	
20	a)	Describe the single phase ON mode and two-phase ON mode of operation of	(8)
		variable reluctance stepper motor	
×	b) -	Illustrate any one application of dc servomotor	(6)

1