02000EET206052101

		10	PISS.	ON B	1	20
Reg No.:	Name:	3	= 5		(th)	9
	LAM TECHNOLOGICAL UNIVERS			KINDLA FRANCE		*/
Fourth Semester B.Tech Degre	ee Supplementary Examination June 202	3 (20	19 Sche	me)	Xª	1
			LAD	THURU	11	

Course Code: EET206 Course Name: DIGITAL ELECTRONICS

Max. Marks: 100		Marks: 100 Duration: 3 H	Hours	
			PART A (Answer all questions; each question carries 3 marks)	Marks
	1			
			Find the Binary code and Gray code of the number 3A8 ₁₆	3
	2		Draw the Truth table and explain the operation of Universal Gates	3
	3		What is half subtractor. Implement the circuit using logic gates	3
	4		Express $AB + A\bar{B}C + B\bar{C}$ as standard SOP expression	3
	5		Implement $Y(A, B, C) = \sum m (0,1,2,6,7)$ using MUX	3
	6		Design a 2 bit magnitude comparator using logic gates.	3
	7		Derive the characteristic equation of JK flip flop	3
	8		Draw the circuit of 4 bit Johnson counter and give the output table	3
	9		With Suitable design diagram, explain PLA	3
	10		What is meant by resolution of a DAC	3
			PART B	
			(Answer one full question from each module, each question carries 14 marks)	
			Module -1	
	11	a)	Perform -25+14 using 1's compliment and 2's compliment method	7
		b)	With a neat diagram explain TTL NAND gate	7
	12	a)	Discuss the various methods of representing signed numbers in binary	7
		b)	Compare CMOS logic and TTL	7
			Module -2	
	13	a)	Reduce the expression $Y = \sum m(0,1,2,3,5,7,8,9,10,12,13)$ and show the	7
			implementation using NAND gates	
		b) -	Show the implementation of full adder using half adders	7
	14	a)		
		b)	Explain the difference between ripple adder and carry look ahead adder with	6 8
		-	implementation details.	Ū

02000EET206052101

Module -3

15	a)	Give the block diagram representation of ALU and explain it	10
	b)	Draw the logic circuit of a 2 to 4 decoder	4
16	a)	Design a logic circuit for even parity generation, Explain the operation.	10
, 'J	b)	Draw the logic circuit of 4 to 1 MUX	4
		Module -4	
17	a)	Convert a SR flip flop to JK flip flop	7
	b)	Realise and explain a 3 bit asynchronous up counter and show the timing	7
		diagram	
18	a)	What is race around condition and how it can be rectified in JK Master Slave F/F	6
	b)	Explain SISO, SIPO, PIPO, PISO registers	8
		Module -5	
19	a)	Design a synchronous counter that goes through the states 0,3,5,6,0,3,5,6,0,	7
		using T flip flop	
	b)	Explain a Successive approximation type ADC using a neat diagram	7
20	a)	Write the Verilog code for a half adder	7
	b)	Explain R-2R ladder type of DAC	7