EDU

Reg No.:____

A

1

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2021 (2019 scheme)

Course Code: MAT201

		Course Coue. MAT201	THI		
		Course Name: Partial Differential equations and Complex analysis	HURUT		
Max.	Mark	s: 100 Duration:	3 Hours		
PART A					
		Answer all questions. Each question carries 3 marks	Marks		
	1	Find the partial differential equation by eliminating arbitrary functions f and	(3)		
,	<	g from $z = f(x) + g(y)$			
	2	Solve $\frac{\partial^2 z}{\partial x^2} = xy$	(3)		
Ĩ	3	Write the three possible solutions of one dimensional wave equation.	(3)		
4	4	Write any two assumptions used in the derivation of one dimensional heat	(3)		
		equation.			
	5	Test the continuity at $z = 0$ of $f(z) = \begin{cases} \frac{Im(Z)}{ Z }, & z \neq 0\\ 0, & z = 0 \end{cases}$	(3)		
(6	Check whether $f(z) = \overline{z}$ is an analytic function?	(3)		
·	7	Evaluate $\oint_c \frac{e^z}{z-5} dz$, where c is the circle $ z =4$	(3)		
8	8	Find the Taylor series expansion of e^z about $z = \pi$.	(3)		
	9	Give example of (a) removable singularity (b) pole (c) essential singularity	(3)		
	10	Find the Laurent series expansions of $\frac{1}{z(z-1)}$ about $z = 0$	(3)		

PART B

Answer any one full question from each module. Each question carries 14 marks Module 1

11	(a)	Solve $y^2p - xyq = xz$	7
	(b)	Solve by the method of separation of variables $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$, $u(x, 0) = 4e^{-3x}$	7
12	(a)	Find the complete integral of $px + qy = pq$ using Charpit's method.	7
	(b)	Form the partial differential equation corresponding to family of spheres	7
		with center on z-axis and radius a.	

0800MAT201122102

Module 2

7

7

7

7

7

7

7

7 `

7

7

7

7

- 13 (a) Solve the boundary value problem described by $u_{tt}-c^2 u_{xx}=0, 0 \le x \le \ell, t\ge 0$ $u(0, t) = u(\ell, t)=0, t\ge 0, u(x, 0) = 10 \sin\left(\frac{\pi x}{\ell}\right), \frac{\partial u}{\partial t}(x, 0) = 0$
 - (b) Find the temperature u(x, t) in a homogenous bar heat conducting material of length l whose ends kept at 0°c and whose initial temperature is given by u(x, 0) = lx x².
- 14 (a) Derive one dimensional wave equation.
 - (b) The ends A and B of a rod 10 cm in length are kept at temperatures 0°C and 100°C until the steady state condition prevails. If B is Suddenly reduced to 0°C and kept so . Find the temperature distribution in the rod at time t.

Module 3

- 15 (a) Show that an analytic function f(z) = u + iv is constant if its modulus is constant.
 - (b) Find the image of $1 \le |z| \le 2$, $\frac{\pi}{6} \le \theta \le \frac{\pi}{3}$ under the mapping $w = z^2$
- 16 (a) Verify whether $u = x^3 3xy^2$ is harmonic and find its conjugate harmonic function v.
 - (b) Find the image of the region between real axis and a line parallel to real axis 7 at $y = \frac{\pi}{2}$ under the mapping $W = e^{z}$

Module 4

- 17 (a) Evaluate $\int_C |z|^2 dz$ where C is the circle |z| = 2.
 - (b) Evaluate $\int_C \frac{z^2+2}{(z-3)^2} dz$ where C is the circle |z| = 4 using Cauchy's integral formula
- 18 (a) Evaluate $\oint_c \frac{e^z}{(z-1)(z-4)}$ dz, where c is |z| = 2 using Cauchy's integral formula
 - (b) Evaluate $\int \frac{3z^2 + 7z}{z+1} dz$ over (a) |z| = 1.5 (b) |z+i| = 1 7

Module 5

19 (a) Find the Laurent series expansion for $f(z) = \frac{1}{(z-1)(z-2)}$ valid in (a) 1 < |z| < 2 (b) |z| > 2

0800MAT201122102

7

7

(b) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{5-4\sin\theta}$$

20 (a) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}+2}{(x^{2}+1)(x^{2}+4)} dx$.
(b) Using residue theorem evaluate $\oint_{c} \frac{z+1}{z^{4}-2z^{3}} dz$, where c is $|z| = \frac{1}{2}$

1