0400CST444052302

13

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Eighth Semester B.Tech Degree Regular Examination June 2023 (2019 Scheme)

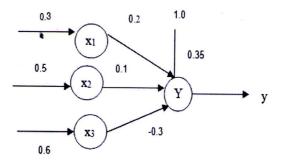
Course Code: CST444 Course Name: SOFT COMPUTING

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions, each carries 3 marks.	Marks				
1	Draw a simple Artificial Neuron and discuss the calculation of net input.					
2	Compare and contrast biological neuron and artificial neuron.					
3	State the testing algorithm used in Perceptron Network.					
4	List the stages involved in Backpropagation Network.					
5	Using your own intuition, plot the Fuzzy membership function for the "Age of people".					
6	Let A={ $(x1,0.5), (x2,0.1), (x3,0.9)$ } and B={ $(x1,0.4), (x2,0.4), (x3,0.5)$ }	(3)				
	Find intersection, union and complement of both the fuzzy sets.					
7	Draw the flow chart and explain the steps of Genetic Algorithm.	(3)				
8	Explain any 3 mutation techniques with example.	(3)				
9	Differentiate between linear and nonlinear Multi Objective Optimization Problem.	(3)				
10	Explain the processes of tuning in genetic-fuzzy rule-based systems.					
	PART B Answer any one full question from each module, each carries 14 marks.					
	Module I					
11, a)	Implement ANDNOT function using Mc-Culloch Pitts Neuron.	. 8				
b)	Define linear separability. Justify -XOR function is non-linearly separable by a	6				
	single decision boundary line.					


OR

12 a) Calculate the output of the neuron y for the following network using6

- 1. binary sigmoidal activation function
- 2. bipolar sigmoidal activation function

ă

0400CST444052302

b) Using the Hebb rule, find the weights required to perform the following classifications of the given input patterns shown in figure. The "+" symbols represent the value "1" and empty space indicate "-1". Consider "1" belongs to the members of class (so has target value 1) and "0" does not belong to the members of class (so has target value -1).

8

4

+	+	+		+	+	+	
	+			+		+	
+	+	+		+	+	+	
	"I"			"O"			

Module II

- 13 a) Implement AND function with binary inputs and bipolar targets using perceptron
 8 training algorithm.
 - b) Draw the architecture of Back propagation Network and explain the training 6 algorithm.

OR

- 14 a) What is Adaline? Draw the model of an Adaline Network.
 - b) Use Adaline to train OR function with bipolar inputs and targets. Perform 2 epochs 10 of training.

Module III

a) Using intuition and your own definition of the universe of discourse, plot fuzzy
 membership functions to the following variables:

Liquid level in the tank

(a)Very small (b) Small (c) Empty (d) Full (e) Very full

b) Define defuzzification. With the help of examples, explain various defuzzification 9 methods.

Page 2of 3

0400CST444052302

- 16 a) Consider the discrete fuzzy set defined on the universe X= {a, b, c, d, e} as $A = \{\frac{1}{a} + \frac{0.9}{b} + \frac{0.6}{c} + \frac{0.3}{d} + \frac{0}{e}\}, \text{ Using Zadeh's notation, find the } \lambda - \text{ cut sets for } \lambda = 1,$ 0.9, 0.6, 0+ and 0.
 - b) Given two universes X= {x1, x2, x3, x4, x5} and Y= {y1, y2, y3, y4, y5}, the fuzzy sets A defined on X and fuzzy set B defined on Y are given below.

$$A = \{\frac{0.4}{x1} + \frac{0.7}{x2} + \frac{1}{x3} + \frac{0.8}{x4} + \frac{0.6}{x5}\}$$
$$B = \{\frac{0.2}{y1} + \frac{0.6}{y2} + \frac{1}{y3} + \frac{0.9}{y4} + \frac{0.7}{y5}\}$$

i) Find the relation $R = A \times B$

14

Consider another fuzzy set C defined on the universe $V = \{v1, v2, v3\}$

$$C = \{\frac{0.4}{v1} + \frac{1}{v2} + \frac{0.8}{v3}\}$$

ii) Find $P = B \times C$.

iii) Using max-min composition find RoP.

Module IV

- 17 a) What is the Fuzzy Inference System (FIS)? Illustrate Mamdani FIS with an 7 example.
 - b) Explain the different methods of encoding that are possible in genetic algorithms. 7

OR

18 a) What is the concept of crossover in Genetic Algorithm? Explain the different 7 methods of cross over that are possible in genetic algorithms.

b) Explain any 4 Genetic Algorithm selection operators.

Module V

- 19 a) Explain convex and non-convex MOOP
 - b) Illustrate the different steps in genetic-neuro hybrid systems with the help of a 7 neat block diagram.

OR

- 20 a) What are the properties of dominance relation? 7
 - b) What are the classifications of neuro-fuzzy hybrid systems? Discuss in detail. 7

Page 3of 3

9

7

7